These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35353602)

  • 1. The role of user preference in the customized control of robotic exoskeletons.
    Ingraham KA; Remy CD; Rouse EJ
    Sci Robot; 2022 Mar; 7(64):eabj3487. PubMed ID: 35353602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized hip-knee-ankle exoskeleton assistance at a range of walking speeds.
    Bryan GM; Franks PW; Song S; Voloshina AS; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH
    J Neuroeng Rehabil; 2021 Oct; 18(1):152. PubMed ID: 34663372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing Exoskeleton Assistance for Faster Self-Selected Walking.
    Song S; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():786-795. PubMed ID: 33877982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing the relationship between peak assistance torque and metabolic cost reduction during running with ankle exoskeletons.
    Miller DE; Tan GR; Farina EM; Sheets-Singer AL; Collins SH
    J Neuroeng Rehabil; 2022 May; 19(1):46. PubMed ID: 35549977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actuation Timing Perception of a Powered Ankle Exoskeleton and Its Associated Ankle Angle Changes During Walking.
    Peng X; Acosta-Sojo Y; Wu MI; Stirling L
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():869-877. PubMed ID: 35333715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effects of ankle exoskeleton assistance during human walking on lower limb muscle contractions and coordination patterns].
    Wang W; Ding J; Wang Y; Liu Y; Zhang J; Liu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):75-83. PubMed ID: 35231968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuromechanics and Energetics of Walking With an Ankle Exoskeleton Using Neuromuscular-Model Based Control: A Parameter Study.
    Shafer BA; Philius SA; Nuckols RW; McCall J; Young AJ; Sawicki GS
    Front Bioeng Biotechnol; 2021; 9():615358. PubMed ID: 33954159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Bilateral Assistance for Hemiparetic Gait Post-Stroke Using a Powered Hip Exoskeleton.
    Pan YT; Kang I; Joh J; Kim P; Herrin KR; Kesar TM; Sawicki GS; Young AJ
    Ann Biomed Eng; 2023 Feb; 51(2):410-421. PubMed ID: 35963920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biomechanical comparison of powered robotic exoskeleton gait with normal and slow walking: An investigation with able-bodied individuals.
    Hayes SC; White M; White HSF; Vanicek N
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105133. PubMed ID: 32777685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heuristic-Based Ankle Exoskeleton Control for Co-Adaptive Assistance of Human Locomotion.
    Jackson RW; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2059-2069. PubMed ID: 31425120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How adaptation, training, and customization contribute to benefits from exoskeleton assistance.
    Poggensee KL; Collins SH
    Sci Robot; 2021 Sep; 6(58):eabf1078. PubMed ID: 34586837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assistive Exoskeleton Control with User-Tuned Multi-Objective Optimization.
    Stewart K; Diduch C; Sensinger J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():554-558. PubMed ID: 31374688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized hip-knee-ankle exoskeleton assistance reduces the metabolic cost of walking with worn loads.
    Bryan GM; Franks PW; Song S; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH
    J Neuroeng Rehabil; 2021 Nov; 18(1):161. PubMed ID: 34743714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative ankle-exoskeleton control can reduce effort to recover balance after unexpected disturbances during walking.
    Bayón C; Keemink AQL; van Mierlo M; Rampeltshammer W; van der Kooij H; van Asseldonk EHF
    J Neuroeng Rehabil; 2022 Feb; 19(1):21. PubMed ID: 35172846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary Validation of Proportional Myoelectric Control of A Commercially Available Robotic Ankle Exoskeleton.
    Hybart RL; Ferris DP
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-5. PubMed ID: 36176129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Power Delivery Timing on the Energetics and Biomechanics of Humans Wearing a Hip Exoskeleton.
    Young AJ; Foss J; Gannon H; Ferris DP
    Front Bioeng Biotechnol; 2017; 5():4. PubMed ID: 28337434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Users Maintain Task Accuracy and Gait Characteristics During Missed Exoskeleton Actuations Through Adaptations In Joint Kinematics.
    Wu MI; Baum BS; Edwards H; Stirling L
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1809-1813. PubMed ID: 36086362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting walking response to ankle exoskeletons using data-driven models.
    Rosenberg MC; Banjanin BS; Burden SA; Steele KM
    J R Soc Interface; 2020 Oct; 17(171):20200487. PubMed ID: 33050782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.