These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 35353615)

  • 41. Astronaut-induced disturbances to the microgravity environment of the Mir Space Station.
    Newman DJ; Amir AR; Beck SM
    J Spacecr Rockets; 2001; 38(4):578-83. PubMed ID: 12033220
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning.
    Gaveau J; Paizis C; Berret B; Pozzo T; Papaxanthis C
    J Neurophysiol; 2011 Aug; 106(2):620-9. PubMed ID: 21562193
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vestibular and somatosensory interaction during recovery of balance instability after spaceflight.
    Hlavacka F; Dzurkova O; Kornilova LN
    J Gravit Physiol; 2001 Jul; 8(1):P89-92. PubMed ID: 12650187
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An Augmented Reality Hand-Eye Sensorimotor Impairment Assessment for Spaceflight Operations.
    Allred AR; Weiss H; Clark TK; Stirling L
    Aerosp Med Hum Perform; 2024 Feb; 95(2):69-78. PubMed ID: 38263106
    [No Abstract]   [Full Text] [Related]  

  • 45. Human vagal baroreflex mechanisms in space.
    Eckberg DL; Halliwill JR; Beightol LA; Brown TE; Taylor JA; Goble R
    J Physiol; 2010 Apr; 588(Pt 7):1129-38. PubMed ID: 20156846
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The neurology of space flight; How does space flight effect the human nervous system?
    Gupta U; Baig S; Majid A; Bell SM
    Life Sci Space Res (Amst); 2023 Feb; 36():105-115. PubMed ID: 36682819
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cardiovascular function and basics of physiology in microgravity.
    Aubert AE; Beckers F; Verheyden B
    Acta Cardiol; 2005 Apr; 60(2):129-51. PubMed ID: 15887469
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stumbling reactions in hypo and hyper gravity - muscle synergies are robust across different perturbations of human stance during parabolic flights.
    Holubarsch J; Helm M; Ringhof S; Gollhofer A; Freyler K; Ritzmann R
    Sci Rep; 2019 Jul; 9(1):10490. PubMed ID: 31324854
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effects of weightlessness on the human organism and mammalian cells.
    Pietsch J; Bauer J; Egli M; Infanger M; Wise P; Ulbrich C; Grimm D
    Curr Mol Med; 2011 Jul; 11(5):350-64. PubMed ID: 21568935
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recovery of the locomotor function after prolonged microgravity exposure. I. Head-trunk movement and locomotor equilibrium during various tasks.
    Courtine G; Pozzo T
    Exp Brain Res; 2004 Sep; 158(1):86-99. PubMed ID: 15164151
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optical Coherence Tomography Analysis of the Optic Nerve Head and Surrounding Structures in Long-Duration International Space Station Astronauts.
    Patel N; Pass A; Mason S; Gibson CR; Otto C
    JAMA Ophthalmol; 2018 Feb; 136(2):193-200. PubMed ID: 29327060
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microgravity effects on "postural" muscle activity patterns.
    Layne CS; Spooner BS
    Adv Space Res; 1994; 14(8):381-4. PubMed ID: 11537944
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Occlusion, sternocleidomastoid muscle activity, and body sway: a pilot study in male astronauts.
    Sforza C; Tartaglia GM; Solimene U; Morgun V; Kaspranskiy RR; Ferrario VF
    Cranio; 2006 Jan; 24(1):43-9. PubMed ID: 16541845
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The individual and combined effects of spaceflight radiation and microgravity on biologic systems and functional outcomes.
    Willey JS; Britten RA; Blaber E; Tahimic CGT; Chancellor J; Mortreux M; Sanford LD; Kubik AJ; Delp MD; Mao XW
    J Environ Sci Health C Toxicol Carcinog; 2021; 39(2):129-179. PubMed ID: 33902391
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Static and dynamic postural control in long-term microgravity: evidence of a dual adaptation.
    Baroni G; Pedrocchi A; Ferrigno G; Massion J; Pedotti A
    J Appl Physiol (1985); 2001 Jan; 90(1):205-15. PubMed ID: 11133912
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Muscles in microgravity: from fibres to human motion.
    di Prampero PE; Narici MV
    J Biomech; 2003 Mar; 36(3):403-12. PubMed ID: 12594988
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Circadian challenge of astronauts' unconscious mind adapting to microgravity in space, estimated by heart rate variability.
    Otsuka K; Cornelissen G; Kubo Y; Shibata K; Hayashi M; Mizuno K; Ohshima H; Furukawa S; Mukai C
    Sci Rep; 2018 Jul; 8(1):10381. PubMed ID: 29991811
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Drugs in space: Pharmacokinetics and pharmacodynamics in astronauts.
    Kast J; Yu Y; Seubert CN; Wotring VE; Derendorf H
    Eur J Pharm Sci; 2017 Nov; 109S():S2-S8. PubMed ID: 28533143
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Astronaut-induced disturbances in microgravity.
    Newman DJ; Tryfonidis M; van Schoor MC
    J Spacecr Rockets; 1997; 34(2):252-4. PubMed ID: 11540128
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neurology of microgravity and space travel.
    Fujii MD; Patten BM
    Neurol Clin; 1992 Nov; 10(4):999-1013. PubMed ID: 1435667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.