These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35354059)

  • 1. Comparison of 3 Cell-Free Matrix Scaffolds Used to Treat Osteochondral Lesions in a Rabbit Model.
    Irem Demir A; Pulatkan A; Ucan V; Yilmaz B; Tahmasebifar A; Tok OE; Tuncay I; Elmali N; Ozturk BY; Uzer G
    Am J Sports Med; 2022 Apr; 50(5):1399-1408. PubMed ID: 35354059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histomorphological Investigation of Microfracture Location in a Rabbit Osteochondral Defect Model.
    Kilic AI; Hapa O; Ozmanevra R; Pak T; Akokay P; Ergur BU; Kosay MC
    Am J Sports Med; 2023 Sep; 51(11):3025-3034. PubMed ID: 37594006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies.
    Christensen BB; Foldager CB; Hansen OM; Kristiansen AA; Le DQ; Nielsen AD; Nygaard JV; Bünger CE; Lind M
    Knee Surg Sports Traumatol Arthrosc; 2012 Jun; 20(6):1192-204. PubMed ID: 21971941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Articular cartilage tissue engineering based on a mechano-active scaffold made of poly(L-lactide-co-epsilon-caprolactone): In vivo performance in adult rabbits.
    Xie J; Han Z; Naito M; Maeyama A; Kim SH; Kim YH; Matsuda T
    J Biomed Mater Res B Appl Biomater; 2010 Jul; 94(1):80-8. PubMed ID: 20336738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Similar hyaline-like cartilage repair of osteochondral defects in rabbits using isotropic and anisotropic collagen scaffolds.
    de Mulder EL; Hannink G; van Kuppevelt TH; Daamen WF; Buma P
    Tissue Eng Part A; 2014 Feb; 20(3-4):635-45. PubMed ID: 24044726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaffold With Natural Calcified Cartilage Zone for Osteochondral Defect Repair in Minipigs.
    Huang Y; Fan H; Gong X; Yang L; Wang F
    Am J Sports Med; 2021 Jun; 49(7):1883-1891. PubMed ID: 33961510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of adipose tissue-derived stromal vascular fraction on osteochondral defects treated by hyaluronic acid-based scaffold: An experimental study.
    Şahin AA; Değirmenci E; Özturan KE; Fırat T; Kükner A
    Jt Dis Relat Surg; 2021; 32(2):347-354. PubMed ID: 34145810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of press-fit biphasic (collagen and HA/βTCP) scaffold with cell-based therapy on cartilage and subchondral bone repair knee defect in rabbits.
    Hernigou J; Vertongen P; Chahidi E; Kyriakidis T; Dehoux JP; Crutzen M; Boutry S; Larbanoix L; Houben S; Gaspard N; Koulalis D; Rasschaert J
    Int Orthop; 2018 Jul; 42(7):1755-1767. PubMed ID: 29882123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model.
    Luo Z; Jiang L; Xu Y; Li H; Xu W; Wu S; Wang Y; Tang Z; Lv Y; Yang L
    Biomaterials; 2015 Jun; 52():463-75. PubMed ID: 25818452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Strategy to Enhance Microfracture Treatment With Stromal Cell-Derived Factor-1 in a Rat Model.
    Mustapich T; Schwartz J; Palacios P; Liang H; Sgaglione N; Grande DA
    Front Cell Dev Biol; 2020; 8():595932. PubMed ID: 33634095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intra-articular Injection of Bevacizumab Enhances Bone Marrow Stimulation-Mediated Cartilage Repair in a Rabbit Osteochondral Defect Model.
    Utsunomiya H; Gao X; Cheng H; Deng Z; Nakama G; Mascarenhas R; Goldman JL; Ravuri SK; Arner JW; Ruzbarsky JJ; Lowe WR; Philippon MJ; Huard J
    Am J Sports Med; 2021 Jun; 49(7):1871-1882. PubMed ID: 33979242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biologically Regulated Marrow Stimulation by Blocking TGF-β1 With Losartan Oral Administration Results in Hyaline-like Cartilage Repair: A Rabbit Osteochondral Defect Model.
    Utsunomiya H; Gao X; Deng Z; Cheng H; Nakama G; Scibetta AC; Ravuri SK; Goldman JL; Lowe WR; Rodkey WG; Alliston T; Philippon MJ; Huard J
    Am J Sports Med; 2020 Mar; 48(4):974-984. PubMed ID: 32027515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced articular cartilage regeneration using costal chondrocyte-derived scaffold-free tissue engineered constructs with ascorbic acid treatment.
    Zheng K; Ma Y; Chiu C; Xue M; Zhang C; Du D
    J Orthop Translat; 2024 Mar; 45():140-154. PubMed ID: 38559899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Experimental study on loading naringin composite scaffolds for repairing rabbit osteochondral defects].
    Huang J; Wang S; Zhang X; Li G; Ji P; Zhao H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2017 Apr; 31(4):489-496. PubMed ID: 29798617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of spontaneous hyaline cartilage regeneration using a double-network gel: efficacy of a novel therapeutic strategy for an articular cartilage defect.
    Kitamura N; Yasuda K; Ogawa M; Arakaki K; Kai S; Onodera S; Kurokawa T; Gong JP
    Am J Sports Med; 2011 Jun; 39(6):1160-9. PubMed ID: 21460067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macroscopic and histologic evaluation of cartilage regeneration treated using xenogenic biodegradable porous sponge cartilage scaffold composite supplemented with allogenic adipose derived mesenchymal stem cells (ASCs) and secretome: An in vivo experimental study.
    Widhiyanto L; Utomo DN; Perbowo AP; Hernugrahanto KD;
    J Biomater Appl; 2020 Sep; 35(3):422-429. PubMed ID: 32558614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Slotted Decellularized Osteochondral Scaffold With Layer-Specific Release of Stem Cell Differentiation Stimulators Enhances Cartilage and Bone Regeneration in Osteochondral Defects in a Rabbit Model.
    Deng Z; Zhu W; Lu B; Li M; Xu D
    Am J Sports Med; 2022 Oct; 50(12):3390-3405. PubMed ID: 36122351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-epsilon-caprolactone).
    Jung Y; Park MS; Lee JW; Kim YH; Kim SH; Kim SH
    Biomaterials; 2008 Dec; 29(35):4630-6. PubMed ID: 18804279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repair of full-thickness articular cartilage defects using injectable type II collagen gel embedded with cultured chondrocytes in a rabbit model.
    Funayama A; Niki Y; Matsumoto H; Maeno S; Yatabe T; Morioka H; Yanagimoto S; Taguchi T; Tanaka J; Toyama Y
    J Orthop Sci; 2008 May; 13(3):225-32. PubMed ID: 18528656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The efficacy of intra-articular hyaluronan injection after the microfracture technique for the treatment of articular cartilage lesions.
    Strauss E; Schachter A; Frenkel S; Rosen J
    Am J Sports Med; 2009 Apr; 37(4):720-6. PubMed ID: 19204370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.