These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 35354245)

  • 61. The kidney tight junction (Review).
    Hou J
    Int J Mol Med; 2014 Dec; 34(6):1451-7. PubMed ID: 25319473
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Claudins and renal salt transport.
    Muto S; Furuse M; Kusano E
    Clin Exp Nephrol; 2012 Feb; 16(1):61-7. PubMed ID: 22038258
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Disease-associated mutations affect intracellular traffic and paracellular Mg2+ transport function of Claudin-16.
    Kausalya PJ; Amasheh S; Günzel D; Wurps H; Müller D; Fromm M; Hunziker W
    J Clin Invest; 2006 Apr; 116(4):878-91. PubMed ID: 16528408
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Claudin-10b cation channels in tight junction strands: Octameric-interlocked pore barrels constitute paracellular channels with low water permeability.
    Nagarajan SK; Klein S; Fadakar BS; Piontek J
    Comput Struct Biotechnol J; 2023; 21():1711-1727. PubMed ID: 36874155
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules.
    Muto S; Hata M; Taniguchi J; Tsuruoka S; Moriwaki K; Saitou M; Furuse K; Sasaki H; Fujimura A; Imai M; Kusano E; Tsukita S; Furuse M
    Proc Natl Acad Sci U S A; 2010 Apr; 107(17):8011-6. PubMed ID: 20385797
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Insights into driving forces and paracellular permeability from claudin-16 knockdown mouse.
    Shan Q; Himmerkus N; Hou J; Goodenough DA; Bleich M
    Ann N Y Acad Sci; 2009 May; 1165():148-51. PubMed ID: 19538300
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis.
    Vall-Palomar M; Madariaga L; Ariceta G
    Pediatr Nephrol; 2021 Oct; 36(10):3045-3055. PubMed ID: 33595712
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Conserved aromatic residue confers cation selectivity in claudin-2 and claudin-10b.
    Li J; Zhuo M; Pei L; Yu AS
    J Biol Chem; 2013 Aug; 288(31):22790-7. PubMed ID: 23760508
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Claudin-15 forms a water channel through the tight junction with distinct function compared to claudin-2.
    Rosenthal R; Günzel D; Piontek J; Krug SM; Ayala-Torres C; Hempel C; Theune D; Fromm M
    Acta Physiol (Oxf); 2020 Jan; 228(1):e13334. PubMed ID: 31188544
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The tight junction proteins claudin-7 and -8 display a different subcellular localization at Henle's loops and collecting ducts of rabbit kidney.
    Gonzalez-Mariscal L; Namorado Mdel C; Martin D; Sierra G; Reyes JL
    Nephrol Dial Transplant; 2006 Sep; 21(9):2391-8. PubMed ID: 16766545
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Hypomagnesemia-hypercalciuria-nephrocalcinosis and ocular findings: a new claudin-19 mutation.
    Ekinci Z; Karabaş L; Konrad M
    Turk J Pediatr; 2012; 54(2):168-70. PubMed ID: 22734304
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Claudin-14 regulates renal Ca⁺⁺ transport in response to CaSR signalling via a novel microRNA pathway.
    Gong Y; Renigunta V; Himmerkus N; Zhang J; Renigunta A; Bleich M; Hou J
    EMBO J; 2012 Apr; 31(8):1999-2012. PubMed ID: 22373575
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Differential expression of claudin tight junction proteins in the human cortical nephron.
    Kirk A; Campbell S; Bass P; Mason J; Collins J
    Nephrol Dial Transplant; 2010 Jul; 25(7):2107-19. PubMed ID: 20124215
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Overexpression of claudin-7 decreases the paracellular Cl- conductance and increases the paracellular Na+ conductance in LLC-PK1 cells.
    Alexandre MD; Lu Q; Chen YH
    J Cell Sci; 2005 Jun; 118(Pt 12):2683-93. PubMed ID: 15928046
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Methods to analyze subcellular localization and intracellular trafficking of Claudin-16.
    Kausalya PJ; Hunziker W
    Methods Mol Biol; 2011; 762():129-46. PubMed ID: 21717354
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A novel mutation of the claudin 16 gene in familial hypomagnesemia with hypercalciuria and nephrocalcinosis mimicking rickets.
    Kasapkara CS; Tumer L; Okur I; Hasanoglu A
    Genet Couns; 2011; 22(2):187-92. PubMed ID: 21848011
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Axial and cellular heterogeneity in electrolyte transport pathways along the thick ascending limb.
    Dimke H; Schnermann J
    Acta Physiol (Oxf); 2018 May; 223(1):e13057. PubMed ID: 29476644
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Kidney stones, hypercalciuria, and recent insights into proximal tubule calcium reabsorption.
    Alexander RT
    Curr Opin Nephrol Hypertens; 2023 Jul; 32(4):359-365. PubMed ID: 37074688
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium.
    Hou J; Renigunta A; Gomes AS; Hou M; Paul DL; Waldegger S; Goodenough DA
    Proc Natl Acad Sci U S A; 2009 Sep; 106(36):15350-5. PubMed ID: 19706394
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Paracellular calcium transport in the proximal tubule and the formation of kidney stones.
    Curry JN; Yu ASL
    Am J Physiol Renal Physiol; 2019 May; 316(5):F966-F969. PubMed ID: 30838875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.