BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35354330)

  • 1. Standoff Detection System Using Raman Spectroscopy in the Deep-Ultraviolet Wavelength Region for the Detection of Hazardous Gas.
    Eto S; Ichikawa Y; Ogita M; Sugimoto S; Asahi I
    Appl Spectrosc; 2022 Oct; 76(10):1246-1253. PubMed ID: 35354330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Portable Deep-Ultraviolet (DUV) Raman for Standoff Detection.
    Hopkins AJ; Cooper JL; Profeta LT; Ford AR
    Appl Spectrosc; 2016 May; 70(5):861-73. PubMed ID: 27059445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Standoff Deep Ultraviolet Raman Spectrometer for Trace Detection.
    Bykov SV; Asher SA
    Appl Spectrosc; 2024 Feb; 78(2):227-242. PubMed ID: 38204400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standoff and arms-length detection of chemicals with single-beam coherent anti-Stokes Raman scattering.
    Li H; Harris DA; Xu B; Wrzesinski PJ; Lozovoy VV; Dantus M
    Appl Opt; 2009 Feb; 48(4):B17-22. PubMed ID: 19183575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Standoff Raman spectrometry for the non-invasive detection of explosives precursors in highly fluorescing packaging.
    Izake EL; Sundarajoo S; Olds W; Cletus B; Jaatinen E; Fredericks PM
    Talanta; 2013 Jan; 103():20-7. PubMed ID: 23200353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of hazardous chemical using dual-wavelength Raman spectroscopy in the ultraviolet region.
    Lee JH; Jeong YS; Koh YJ; Kim J; Nam H; Son H; Choi SK
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 287(Pt 1):122061. PubMed ID: 36335749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Standoff spectroscopy of surface adsorbed chemicals.
    Van Neste CW; Senesac LR; Thundat T
    Anal Chem; 2009 Mar; 81(5):1952-6. PubMed ID: 19186935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Raman spectroscopy for the non-invasive standoff detection of concealed chemical threat agents.
    Izake EL; Cletus B; Olds W; Sundarajoo S; Fredericks PM; Jaatinen E
    Talanta; 2012 May; 94():342-7. PubMed ID: 22608458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new eye-safe UV Raman spectrometer for the remote detection of energetic materials in fingerprint concentrations: Characterization by PCA and ROC analyzes.
    Almaviva S; Chirico R; Nuvoli M; Palucci A; Schnürer F; Schweikert W
    Talanta; 2015 Nov; 144():420-6. PubMed ID: 26452842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of Explosives Using Differential Laser-Induced Perturbation Spectroscopy with a Raman-based Probe.
    Oztekin EK; Burton DJ; Hahn DW
    Appl Spectrosc; 2016 Apr; 70(4):676-87. PubMed ID: 26865581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-shot stand-off chemical identification of powders using random Raman lasing.
    Hokr BH; Bixler JN; Noojin GD; Thomas RJ; Rockwell BA; Yakovlev VV; Scully MO
    Proc Natl Acad Sci U S A; 2014 Aug; 111(34):12320-4. PubMed ID: 25114231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-pulse standoff Raman detection of chemicals from 120 m distance during daytime.
    Misra AK; Sharma SK; Acosta TE; Porter JN; Bates DE
    Appl Spectrosc; 2012 Nov; 66(11):1279-85. PubMed ID: 23146183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent mode-selective Raman excitation towards standoff detection.
    Li H; Harris DA; Xu B; Wrzesinski PJ; Lozovoy VV; Dantus M
    Opt Express; 2008 Apr; 16(8):5499-504. PubMed ID: 18542653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of explosives with two-dimensional ultraviolet resonance Raman spectroscopy.
    Comanescu G; Manka CK; Grun J; Nikitin S; Zabetakis D
    Appl Spectrosc; 2008 Aug; 62(8):833-9. PubMed ID: 18702854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultraviolet Raman Wide-Field Hyperspectral Imaging Spectrometer for Standoff Trace Explosive Detection.
    Hufziger KT; Bykov SV; Asher SA
    Appl Spectrosc; 2017 Feb; 71(2):173-185. PubMed ID: 27895234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Ultraviolet Standoff Photoacoustic Spectroscopy of Trace Explosives.
    Zrimsek AB; Bykov SV; Asher SA
    Appl Spectrosc; 2019 Jun; 73(6):601-609. PubMed ID: 30012001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explosive and chemical threat detection by surface-enhanced Raman scattering: a review.
    Hakonen A; Andersson PO; Stenbæk Schmidt M; Rindzevicius T; Käll M
    Anal Chim Acta; 2015 Sep; 893():1-13. PubMed ID: 26398417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Standoff CARS spectroscopy and imaging using an ytterbium-based laser system.
    Gatti D; Lamperti M; Zilli A; Canella F; Cerullo G; Galzerano G; Laporta P; Coluccelli N
    Opt Express; 2022 Apr; 30(9):15376-15387. PubMed ID: 35473258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Underwater Time-Gated Standoff Raman Sensor for In Situ Chemical Sensing.
    Sharma SK; Howe BM; Misra AK; Rognstad MR; Porter JN; Acosta-Maeda TE; Egan MJ
    Appl Spectrosc; 2021 Jun; 75(6):739-746. PubMed ID: 33635100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrational spectroscopy standoff detection of explosives.
    Pacheco-Londoño LC; Ortiz-Rivera W; Primera-Pedrozo OM; Hernández-Rivera SP
    Anal Bioanal Chem; 2009 Sep; 395(2):323-35. PubMed ID: 19633965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.