These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 35354766)
1. Optimization of an Industrial Medium and Culture Conditions for Probiotic Yu HS; Lee NK; Kim WJ; Lee DU; Kim JH; Paik HD J Microbiol Biotechnol; 2022 May; 32(5):630-637. PubMed ID: 35354766 [TBL] [Abstract][Full Text] [Related]
2. Optimization of Medium Composition for Biomass Production of Choi GH; Lee NK; Paik HD J Microbiol Biotechnol; 2021 May; 31(5):717-725. PubMed ID: 33782221 [TBL] [Abstract][Full Text] [Related]
3. Optimization of the medium for Lactobacillus acidophilus by Plackett-Burman and steepest ascent experiment. Chen H; Niu J; Qin T; Ma Q; Wang L; Shu G Acta Sci Pol Technol Aliment; 2015; 14(3):227-232. PubMed ID: 28068030 [TBL] [Abstract][Full Text] [Related]
4. Enhanced mycelial biomass production of the hairy bracket mushroom, Trametes hirsuta (Higher Basidiomycetes), by optimizing medium component with Plackett-Burman design and response surface methodology. Yang R; Liu X; Zhao X; Xu Y; Ma R Int J Med Mushrooms; 2013; 15(6):595-605. PubMed ID: 24266383 [TBL] [Abstract][Full Text] [Related]
5. Vegan grade medium component screening and concentration optimization for the fermentation of the probiotic strain Lactobacillus paracasei IMC 502® using Design of Experiments. Parecha D; Alfano A; Cimini D; Schiraldi C J Ind Microbiol Biotechnol; 2024 Jan; 51():. PubMed ID: 38658186 [TBL] [Abstract][Full Text] [Related]
6. Immunomodulatory Potential of Weissella cibaria in Aged C57BL/6J Mice. Park HE; Kang KW; Kim BS; Lee SM; Lee WK J Microbiol Biotechnol; 2017 Dec; 27(12):2094-2103. PubMed ID: 29032650 [TBL] [Abstract][Full Text] [Related]
7. Optimization of dextran production by Weissella cibaria NITCSK4 using Response Surface Methodology-Genetic Algorithm based technology. Kanimozhi J; Moorthy IG; Sivashankar R; Sivasubramanian V Carbohydr Polym; 2017 Oct; 174():103-110. PubMed ID: 28821024 [TBL] [Abstract][Full Text] [Related]
8. Optimization of medium composition for enhancing growth of Lactobacillus rhamnosus PEN using response surface methodology. Polak-Berecka M; Waśko A; Kordowska-Wiater M; Podleśny M; Targoński Z; Kubik-Komar A Pol J Microbiol; 2010; 59(2):113-8. PubMed ID: 20734756 [TBL] [Abstract][Full Text] [Related]
9. Optimization of medium composition of Ding X; Qian F; Mu G; Tuo Y Prep Biochem Biotechnol; 2023 Oct; 53(9):1058-1066. PubMed ID: 36719814 [TBL] [Abstract][Full Text] [Related]
10. Optimal conditions for the encapsulation of Weissella cibaria JW15 using alginate and chicory root and evaluation of capsule stability in a simulated gastrointestinal system. Kim M; Nam DG; Im P; Choe JS; Choi AJ J Food Sci; 2020 Feb; 85(2):394-403. PubMed ID: 31976556 [TBL] [Abstract][Full Text] [Related]
11. The Plackett-Burman design in optimization of media components for biomass production of Lactobacillus rhamnosus OXY. Waśko A; Kordowska-Wiater M; Podleśny M; Polak-Berecka M; Targoński Z; Kubik-Komar A Acta Biol Hung; 2010 Sep; 61(3):344-55. PubMed ID: 20724280 [TBL] [Abstract][Full Text] [Related]
12. Dextran Utilization During Its Synthesis by Weissella cibaria RBA12 Can Be Overcome by Fed-Batch Fermentation in a Bioreactor. Baruah R; Deka B; Kashyap N; Goyal A Appl Biochem Biotechnol; 2018 Jan; 184(1):1-11. PubMed ID: 28573604 [TBL] [Abstract][Full Text] [Related]
13. Improvement of tacrolimus production in Streptomyces tsukubaensis by mutagenesis and optimization of fermentation medium using Plackett-Burman design combined with response surface methodology. Yan L; Zhang Z; Zhang Y; Yang H; Qiu G; Wang D; Lian Y Biotechnol Lett; 2021 Sep; 43(9):1765-1778. PubMed ID: 34021830 [TBL] [Abstract][Full Text] [Related]
14. Anti-Inflammatory Potential of Probiotic Strain Weissella cibaria JW15 Isolated from Kimchi through Regulation of NF-κB and MAPKs Pathways in LPS-Induced RAW 264.7 Cells. Yu HS; Lee NK; Choi AJ; Choe JS; Bae CH; Paik HD J Microbiol Biotechnol; 2019 Jul; 29(7):1022-1032. PubMed ID: 31216608 [TBL] [Abstract][Full Text] [Related]
15. The immune-modulating effects of viable Park HE; Do KH; Lee WK J Biomed Res; 2019 Nov; 34(1):36-43. PubMed ID: 35081681 [TBL] [Abstract][Full Text] [Related]
16. Antagonistic and antioxidant effect of probiotic Yu HS; Lee NK; Choi AJ; Choe JS; Bae CH; Paik HD Food Sci Biotechnol; 2019 Jun; 28(3):851-855. PubMed ID: 31093443 [TBL] [Abstract][Full Text] [Related]
17. Design and optimization of fermentation medium for enhanced bacteriocin production by probiotic bacterium Enterococcus faecium MC13. Kanmani P; Kumar RS; Yuvaraj N; Paari KA; Pattukumar V; Arul V Prep Biochem Biotechnol; 2011; 41(1):40-52. PubMed ID: 21229463 [TBL] [Abstract][Full Text] [Related]
18. An economic approach for L-(+) lactic acid fermentation by Lactobacillus amylophilus GV6 using inexpensive carbon and nitrogen sources. Altaf M; Venkateshwar M; Srijana M; Reddy G J Appl Microbiol; 2007 Aug; 103(2):372-80. PubMed ID: 17650197 [TBL] [Abstract][Full Text] [Related]
19. Optimization of probiotic and lactic acid production by Lactobacillus plantarum in submerged bioreactor systems. Brinques GB; do Carmo Peralba M; Ayub MA J Ind Microbiol Biotechnol; 2010 Feb; 37(2):205-12. PubMed ID: 19936814 [TBL] [Abstract][Full Text] [Related]
20. OVAT Analysis and Response Surface Methodology Based on Nutrient Sources for Optimization of Pigment Production in the Marine-Derived Fungus Venkatachalam M; Shum-Chéong-Sing A; Caro Y; Dufossé L; Fouillaud M Mar Drugs; 2021 Apr; 19(5):. PubMed ID: 33925595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]