These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 35354821)

  • 1. Donut-like organization of inhibition underlies categorical neural responses in the midbrain.
    Mahajan NR; Mysore SP
    Nat Commun; 2022 Mar; 13(1):1680. PubMed ID: 35354821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial Neural Inhibition for Stimulus Selection across Space.
    Mahajan NR; Mysore SP
    Cell Rep; 2018 Oct; 25(5):1158-1170.e9. PubMed ID: 30380408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Categorical Signaling of the Strongest Stimulus by an Inhibitory Midbrain Nucleus.
    Schryver HM; Straka M; Mysore SP
    J Neurosci; 2020 May; 40(21):4172-4184. PubMed ID: 32300047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reciprocal inhibition of inhibition: a circuit motif for flexible categorization in stimulus selection.
    Mysore SP; Knudsen EI
    Neuron; 2012 Jan; 73(1):193-205. PubMed ID: 22243757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially reciprocal inhibition of inhibition within a stimulus selection network in the avian midbrain.
    Goddard CA; Mysore SP; Bryant AS; Huguenard JR; Knudsen EI
    PLoS One; 2014; 9(1):e85865. PubMed ID: 24465755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A shared inhibitory circuit for both exogenous and endogenous control of stimulus selection.
    Mysore SP; Knudsen EI
    Nat Neurosci; 2013 Apr; 16(4):473-8. PubMed ID: 23475112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rules of competitive stimulus selection in a cholinergic isthmic nucleus of the owl midbrain.
    Asadollahi A; Mysore SP; Knudsen EI
    J Neurosci; 2011 Apr; 31(16):6088-97. PubMed ID: 21508234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diverse processing underlying frequency integration in midbrain neurons of barn owls.
    Gorman JC; Tufte OL; Miller AVR; DeBello WM; Peña JL; Fischer BJ
    PLoS Comput Biol; 2021 Nov; 17(11):e1009569. PubMed ID: 34762650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial cue reliability drives frequency tuning in the barn Owl's midbrain.
    Cazettes F; Fischer BJ; Pena JL
    Elife; 2014 Dec; 3():e04854. PubMed ID: 25531067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial Dependence of Stimulus Competition in the Avian Nucleus Isthmi Pars Magnocellularis.
    Schryver HM; Mysore SP
    Brain Behav Evol; 2019; 93(2-3):137-151. PubMed ID: 31416080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergence of an Adaptive Command for Orienting Behavior in Premotor Brainstem Neurons of Barn Owls.
    Cazettes F; Fischer BJ; Beckert MV; Pena JL
    J Neurosci; 2018 Aug; 38(33):7270-7279. PubMed ID: 30012694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of midbrain and thalamic space-specific neurons in barn owls.
    Pérez ML; Peña JL
    J Neurophysiol; 2006 Feb; 95(2):783-90. PubMed ID: 16424454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of auditory motion-direction sensitive neurons in the barn owl's midbrain.
    Wagner H; von Campenhausen M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Oct; 188(9):705-13. PubMed ID: 12397441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal Prediction of Moving Sound Source Direction in the Owl.
    Cox W; Fischer BJ
    PLoS Comput Biol; 2015 Jul; 11(7):e1004360. PubMed ID: 26226048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of multiplicative auditory responses in the midbrain of the barn owl.
    Fischer BJ; Peña JL; Konishi M
    J Neurophysiol; 2007 Sep; 98(3):1181-93. PubMed ID: 17615132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct neural mechanisms construct classical versus extraclassical inhibitory surrounds in an inhibitory nucleus in the midbrain attention network.
    Schryver HM; Mysore SP
    Nat Commun; 2023 Jun; 14(1):3400. PubMed ID: 37296109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of auditory spatial acuity from neural images on the owl's auditory space map.
    Bala AD; Spitzer MW; Takahashi TT
    Nature; 2003 Aug; 424(6950):771-4. PubMed ID: 12917684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic plasticity in coupled avian midbrain maps.
    Atwal GS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061904. PubMed ID: 15697399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatially precise visual gain control mediated by a cholinergic circuit in the midbrain attention network.
    Asadollahi A; Knudsen EI
    Nat Commun; 2016 Nov; 7():13472. PubMed ID: 27853140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term depression, temporal summation, and onset inhibition shape interval tuning in midbrain neurons.
    Baker CA; Carlson BA
    J Neurosci; 2014 Oct; 34(43):14272-87. PubMed ID: 25339741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.