These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35355005)

  • 1. The colloidal nature of complex fluids enhances bacterial motility.
    Kamdar S; Shin S; Leishangthem P; Francis LF; Xu X; Cheng X
    Nature; 2022 Mar; 603(7903):819-823. PubMed ID: 35355005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Swimming faster despite obstacles: a universal mechanism behind bacterial speed enhancement in complex fluids.
    Kamdar S; Cheng X
    Microb Cell; 2022 Jul; 9(7):139-140. PubMed ID: 35855393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced surface accumulation of swimming bacteria in viscoelastic polymer fluids.
    Cao D; Dvoriashyna M; Liu S; Lauga E; Wu Y
    Proc Natl Acad Sci U S A; 2022 Nov; 119(45):e2212078119. PubMed ID: 36322736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flagellated bacterial motility in polymer solutions.
    Martinez VA; Schwarz-Linek J; Reufer M; Wilson LG; Morozov AN; Poon WC
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17771-6. PubMed ID: 25468981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alignment of particles in sheared viscoelastic fluids.
    Santos de Oliveira IS; van den Noort A; Padding JT; den Otter WK; Briels WJ
    J Chem Phys; 2011 Sep; 135(10):104902. PubMed ID: 21932919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial and viscoelastic forces on rigid colloids in microfluidic channels.
    Howard MP; Panagiotopoulos AZ; Nikoubashman A
    J Chem Phys; 2015 Jun; 142(22):224908. PubMed ID: 26071732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colloidal transport in bacteria suspensions: from bacteria collision to anomalous and enhanced diffusion.
    Lagarde A; Dagès N; Nemoto T; Démery V; Bartolo D; Gibaud T
    Soft Matter; 2020 Aug; 16(32):7503-7512. PubMed ID: 32725023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscoelasticity enhances collective motion of bacteria.
    Liao W; Aranson IS
    PNAS Nexus; 2023 Sep; 2(9):pgad291. PubMed ID: 37719751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective interactions and dynamics of small passive particles in an active bacterial medium.
    Semeraro EF; Devos JM; Narayanan T
    J Chem Phys; 2018 May; 148(20):204905. PubMed ID: 29865804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheology and dynamics of colloidal superballs.
    Royer JR; Burton GL; Blair DL; Hudson SD
    Soft Matter; 2015 Jul; 11(28):5656-65. PubMed ID: 26078036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheology of polymer solutions using colloidal-probe atomic force microscopy.
    Darwiche A; Ingremeau F; Amarouchene Y; Maali A; Dufour I; Kellay H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062601. PubMed ID: 23848708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial transport of colloids in liquid crystalline environments.
    Trivedi RR; Maeda R; Abbott NL; Spagnolie SE; Weibel DB
    Soft Matter; 2015 Nov; 11(43):8404-8. PubMed ID: 26382153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elasto-inertial turbulence.
    Samanta D; Dubief Y; Holzner M; Schäfer C; Morozov AN; Wagner C; Hof B
    Proc Natl Acad Sci U S A; 2013 Jun; 110(26):10557-62. PubMed ID: 23757498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of highly polydisperse colloidal suspensions as a model system for bacterial cytoplasm.
    Hwang J; Kim J; Sung BJ
    Phys Rev E; 2016 Aug; 94(2-1):022614. PubMed ID: 27627367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial scattering in microfluidic crystal flows reveals giant active Taylor-Aris dispersion.
    Dehkharghani A; Waisbord N; Dunkel J; Guasto JS
    Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11119-11124. PubMed ID: 31097583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The limitations of an exclusively colloidal view of protein solution hydrodynamics and rheology.
    Sarangapani PS; Hudson SD; Migler KB; Pathak JA
    Biophys J; 2013 Nov; 105(10):2418-26. PubMed ID: 24268154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracer diffusion in colloidal suspensions under dilute and crowded conditions with hydrodynamic interactions.
    Tomilov A; Videcoq A; Chartier T; Ala-Nissilä T; Vattulainen I
    J Chem Phys; 2012 Jul; 137(1):014503. PubMed ID: 22779661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrokinetics of non-Newtonian fluids: a review.
    Zhao C; Yang C
    Adv Colloid Interface Sci; 2013 Dec; 201-202():94-108. PubMed ID: 24148843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergence of macroscopic directed motion in populations of motile colloids.
    Bricard A; Caussin JB; Desreumaux N; Dauchot O; Bartolo D
    Nature; 2013 Nov; 503(7474):95-8. PubMed ID: 24201282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.