BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35355141)

  • 1. Evaluation of different management scenarios for trout farm effluents using dynamic water quality modeling.
    Muhammetoglu A; Kocer MAT; Durmaz S
    Environ Monit Assess; 2022 Mar; 194(4):312. PubMed ID: 35355141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of effluents from trout farms and their impact on water quality and benthic algal assemblages of the receiving stream.
    Varol M; Balcı M
    Environ Pollut; 2020 Nov; 266(Pt 1):115101. PubMed ID: 32623272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of the effects of a small-scale trout farm on the macrozoobenthos, potamoplankton, and epilithic diatom communities.
    Stojanović K; Živić M; Dulić Z; Marković Z; Krizmanić J; Milošević D; Miljanović B; Jovanović J; Vidaković D; Živić I
    Environ Monit Assess; 2017 Aug; 189(8):403. PubMed ID: 28726174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of water quality index and multivariate statistical methods for the evaluation of water quality of a stream affected by multiple stressors: A case study.
    Varol M
    Environ Pollut; 2020 Nov; 266(Pt 3):115417. PubMed ID: 32823067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorus removal from trout farm effluents by constructed wetlands.
    Comeau Y; Brisson J; Réville JP; Forget C; Drizo A
    Water Sci Technol; 2001; 44(11-12):55-60. PubMed ID: 11804148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water quality impact from shrimp farming effluents in a tropical estuary.
    Bull EG; Cunha CLDN; Scudelari AC
    Water Sci Technol; 2021 Jan; 83(1):123-136. PubMed ID: 33460412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of water environmental capacity and pollution load reduction using QUAL2K for water environmental management.
    Zhang R; Qian X; Yuan X; Ye R; Xia B; Wang Y
    Int J Environ Res Public Health; 2012 Dec; 9(12):4504-21. PubMed ID: 23222206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fate of nitrogen in the Zarin-Gol River receiving trout farm effluent.
    Ghojoghi A; Ghorbani R; Patimar R; Salmanmahiny A; Naddafi R; Fazel A; Jardine TD
    Sci Rep; 2023 Dec; 13(1):21762. PubMed ID: 38066199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trout farm effluents: characterization and impact on the receiving streams.
    Boaventura R; Pedro AM; Coimbra J; Lencastre E
    Environ Pollut; 1997; 95(3):379-87. PubMed ID: 15093453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benthic macroinvertebrate susceptibility to trout farm effluents.
    Roberts L; Boardman G; Voshell R
    Water Environ Res; 2009 Feb; 81(2):150-9. PubMed ID: 19323285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutrient-balance modeling as a tool for environmental management in aquaculture: the case of trout farming in France.
    Papatryphon E; Petit J; Van Der Werf HM; Sadasivam KJ; Claver K
    Environ Manage; 2005 Feb; 35(2):161-74. PubMed ID: 15902455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inflow water is a major source of trout farming contamination with Salmonella and multidrug resistant bacteria.
    Antunes P; Campos J; Mourão J; Pereira J; Novais C; Peixe L
    Sci Total Environ; 2018 Nov; 642():1163-1171. PubMed ID: 30045498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of oxidative stress biomarkers in the freshwater gammarid Gammarus dulensis exposed to trout farm outputs.
    Vranković J; Živić M; Radojević A; Perić-Mataruga V; Todorović D; Marković Z; Živić I
    Ecotoxicol Environ Saf; 2018 Nov; 163():84-95. PubMed ID: 30041129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating spatial land use analysis and mathematical material flow analysis for nutrient management: a case study of the Bang Pakong River Basin in Thailand.
    Kupkanchanakul W; Kwonpongsagoon S; Bader HP; Scheidegger R
    Environ Manage; 2015 May; 55(5):1022-35. PubMed ID: 25573800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection of optimal river water quality improvement programs using QUAL2K: a case study of Taihu Lake Basin, China.
    Zhang R; Qian X; Li H; Yuan X; Ye R
    Sci Total Environ; 2012 Aug; 431():278-85. PubMed ID: 22687438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constructed wetlands for water pollution management of aquaculture farms conducting earthen pond culture.
    Lin YF; Jing SR; Lee DY; Chang YF; Sui HY
    Water Environ Res; 2010 Aug; 82(8):759-68. PubMed ID: 20853755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating water quality responses to best management practices in Portugal.
    Fonseca A; Boaventura RAR; Vilar VJP
    Environ Sci Pollut Res Int; 2018 Jan; 25(2):1587-1596. PubMed ID: 29098589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of fish farm pollution on ecosystem structure and function of tropical headwater streams.
    Rosa Rdos S; Aguiar AC; Boëchat IG; Gücker B
    Environ Pollut; 2013 Mar; 174():204-13. PubMed ID: 23274449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A long-term, multitrophic level study to assess pulp and paper mill effluent effects on aquatic communities in four US receiving waters: characteristics of the study streams, sample sites, mills, and mill effluents.
    Hall TJ; Ragsdale RL; Arthurs WJ; Ikoma J; Borton DL; Cook DL
    Integr Environ Assess Manag; 2009 Apr; 5(2):199-218. PubMed ID: 19063588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-criteria approach for the environmental impact assessment of inland aquaculture.
    Mancini L; Aulicino FA; Marcheggiani S; D'Angelo AM; Pierdominici E; Puccinelli C; Scenati R; Tancioni L
    Ann Ist Super Sanita; 2010; 46(3):317-22. PubMed ID: 20847468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.