BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 35355221)

  • 21. Reverse Electron Transport at Mitochondrial Complex I in Ischemic Stroke, Aging, and Age-Related Diseases.
    Chavda V; Lu B
    Antioxidants (Basel); 2023 Apr; 12(4):. PubMed ID: 37107270
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of mitochondrial ROS in the aging brain.
    Stefanatos R; Sanz A
    FEBS Lett; 2018 Mar; 592(5):743-758. PubMed ID: 29106705
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fatty acids decrease mitochondrial generation of reactive oxygen species at the reverse electron transport but increase it at the forward transport.
    Schönfeld P; Wojtczak L
    Biochim Biophys Acta; 2007 Aug; 1767(8):1032-40. PubMed ID: 17588527
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans.
    Yee C; Yang W; Hekimi S
    Cell; 2014 May; 157(4):897-909. PubMed ID: 24813612
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reactive oxygen species are generated by the respiratory complex II--evidence for lack of contribution of the reverse electron flow in complex I.
    Moreno-Sánchez R; Hernández-Esquivel L; Rivero-Segura NA; Marín-Hernández A; Neuzil J; Ralph SJ; Rodríguez-Enríquez S
    FEBS J; 2013 Feb; 280(3):927-38. PubMed ID: 23206332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Membrane potential and delta pH dependency of reverse electron transport-associated hydrogen peroxide production in brain and heart mitochondria.
    Komlódi T; Geibl FF; Sassani M; Ambrus A; Tretter L
    J Bioenerg Biomembr; 2018 Oct; 50(5):355-365. PubMed ID: 30116920
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex III.
    Korge P; Calmettes G; John SA; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9882-9895. PubMed ID: 28450391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oncogenic pathways and the electron transport chain: a dangeROS liaison.
    Raimondi V; Ciccarese F; Ciminale V
    Br J Cancer; 2020 Jan; 122(2):168-181. PubMed ID: 31819197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identifying Site-Specific Superoxide and Hydrogen Peroxide Production Rates From the Mitochondrial Electron Transport System Using a Computational Strategy.
    Duong QV; Levitsky Y; Dessinger MJ; Strubbe-Rivera JO; Bazil JN
    Function (Oxf); 2021; 2(6):zqab050. PubMed ID: 35330793
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans.
    Yang W; Hekimi S
    PLoS Biol; 2010 Dec; 8(12):e1000556. PubMed ID: 21151885
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems.
    Blokhina O; Fagerstedt KV
    Physiol Plant; 2010 Apr; 138(4):447-62. PubMed ID: 20059731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of reactive oxygen species by mitochondria: central role of complex III.
    Chen Q; Vazquez EJ; Moghaddas S; Hoppel CL; Lesnefsky EJ
    J Biol Chem; 2003 Sep; 278(38):36027-31. PubMed ID: 12840017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reactive Oxygen Species Generation by Reverse Electron Transfer at Mitochondrial Complex I Under Simulated Early Reperfusion Conditions.
    Fukushima CT; Dancil IS; Clary H; Shah N; Nadtochiy SM; Brookes PS
    bioRxiv; 2023 Nov; ():. PubMed ID: 38045326
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reactive oxygen species production by the mitochondrial respiratory chain in isolated rat hepatocytes and liver mitochondria: studies using myxothiazol.
    Young TA; Cunningham CC; Bailey SM
    Arch Biochem Biophys; 2002 Sep; 405(1):65-72. PubMed ID: 12176058
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of lifespan by the mitochondrial electron transport chain: reactive oxygen species-dependent and reactive oxygen species-independent mechanisms.
    Scialo F; Mallikarjun V; Stefanatos R; Sanz A
    Antioxid Redox Signal; 2013 Dec; 19(16):1953-69. PubMed ID: 22938137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of chemical probes to detect mitochondrial ROS by flow cytometry and spectrofluorometry.
    Chen J; Mathews CE
    Methods Enzymol; 2014; 542():223-41. PubMed ID: 24862269
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Roles of Mitochondrial Reactive Oxygen Species in Cellular Signaling and Stress Response in Plants.
    Huang S; Van Aken O; Schwarzländer M; Belt K; Millar AH
    Plant Physiol; 2016 Jul; 171(3):1551-9. PubMed ID: 27021189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial Reactive Oxygen Species and Mitophagy: A Complex and Nuanced Relationship.
    Schofield JH; Schafer ZT
    Antioxid Redox Signal; 2021 Mar; 34(7):517-530. PubMed ID: 32079408
    [No Abstract]   [Full Text] [Related]  

  • 39. Mitochondrial fatty acid oxidation and oxidative stress: lack of reverse electron transfer-associated production of reactive oxygen species.
    Schönfeld P; Wieckowski MR; Lebiedzińska M; Wojtczak L
    Biochim Biophys Acta; 2010; 1797(6-7):929-38. PubMed ID: 20085746
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioenergetic consequences from xenotopic expression of a tunicate AOX in mouse mitochondria: Switch from RET and ROS to FET.
    Szibor M; Gainutdinov T; Fernandez-Vizarra E; Dufour E; Gizatullina Z; Debska-Vielhaber G; Heidler J; Wittig I; Viscomi C; Gellerich F; Moore AL
    Biochim Biophys Acta Bioenerg; 2020 Feb; 1861(2):148137. PubMed ID: 31825809
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.