These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 35355338)
1. An Ultrafast, Durable, and High-Loading Polymer Anode for Aqueous Zinc-Ion Batteries and Supercapacitors. Xu Z; Li M; Sun W; Tang T; Lu J; Wang X Adv Mater; 2022 Jun; 34(23):e2200077. PubMed ID: 35355338 [TBL] [Abstract][Full Text] [Related]
2. Chemical Welding of the Electrode-Electrolyte Interface by Zn-Metal-Initiated In Situ Gelation for Ultralong-Life Zn-Ion Batteries. Qin Y; Li H; Han C; Mo F; Wang X Adv Mater; 2022 Nov; 34(44):e2207118. PubMed ID: 36075027 [TBL] [Abstract][Full Text] [Related]
3. A Dual Salt/Dual Solvent Electrolyte Enables Ultrahigh Utilization of Zinc Metal Anode for Aqueous Batteries. Guan K; Chen W; Yang Y; Ye F; Hong Y; Zhang J; Gu Q; Wu Y; Hu L Adv Mater; 2024 Sep; 36(38):e2405889. PubMed ID: 39054923 [TBL] [Abstract][Full Text] [Related]
4. Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. Wang T; Li C; Xie X; Lu B; He Z; Liang S; Zhou J ACS Nano; 2020 Dec; 14(12):16321-16347. PubMed ID: 33314908 [TBL] [Abstract][Full Text] [Related]
5. A ZIF-8 Host for Dendrite-Free Zinc Anodes and N,O Dual-doped Carbon Cathodes for High-Performance Zinc-Ion Hybrid Capacitors. Lei L; Zheng Y; Zhang X; Su Y; Zhou X; Wu S; Shen J Chem Asian J; 2021 Aug; 16(15):2146-2153. PubMed ID: 34132493 [TBL] [Abstract][Full Text] [Related]
6. Design and Synthesis of Zinc-Activated Co Guo D; Li Z; Wang D; Sun M; Wang H ChemSusChem; 2021 May; 14(10):2205-2215. PubMed ID: 33852199 [TBL] [Abstract][Full Text] [Related]
7. Co-Solvent Electrolyte Engineering for Stable Anode-Free Zinc Metal Batteries. Ming F; Zhu Y; Huang G; Emwas AH; Liang H; Cui Y; Alshareef HN J Am Chem Soc; 2022 Apr; 144(16):7160-7170. PubMed ID: 35436108 [TBL] [Abstract][Full Text] [Related]
8. Flexible Electron-Rich Ion Channels Enable Ultrafast and Stable Aqueous Zinc-Ion Storage. Cheng L; Zhu Q; Liang J; Tang M; Yang Y; Wang S; Ji P; Wang G; Chen W; Zhang X; Wang H ACS Appl Mater Interfaces; 2021 Nov; 13(45):54096-54105. PubMed ID: 34749501 [TBL] [Abstract][Full Text] [Related]
9. High Discharge Capacity and Ultra-Fast-Charging Sodium Dual-Ion Battery Based on Insoluble Organic Polymer Anode and Concentrated Electrolyte. Wu H; Ye Z; Zhu J; Luo S; Li L; Yuan W ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36300925 [TBL] [Abstract][Full Text] [Related]
10. Bidirectional Interface Protection of a Concentrated Electrolyte, Enabling High-Voltage and Long-Life Aqueous Zn Hybrid-Ion Batteries. Deng W; Li Z; Chen Y; Shen N; Zhang M; Yuan X; Hu J; Zhu J; Huang C; Li C; Li R ACS Appl Mater Interfaces; 2022 Aug; 14(31):35864-35872. PubMed ID: 35900098 [TBL] [Abstract][Full Text] [Related]
11. Nucleophilic Interfacial Layer Enables Stable Zn Anodes for Aqueous Zn Batteries. Xu Y; Zheng X; Sun J; Wang W; Wang M; Yuan Y; Chuai M; Chen N; Hu H; Chen W Nano Lett; 2022 Apr; 22(8):3298-3306. PubMed ID: 35385667 [TBL] [Abstract][Full Text] [Related]
12. A Highly Reversible Zn Anode with Intrinsically Safe Organic Electrolyte for Long-Cycle-Life Batteries. Naveed A; Yang H; Shao Y; Yang J; Yanna N; Liu J; Shi S; Zhang L; Ye A; He B; Wang J Adv Mater; 2019 Sep; 31(36):e1900668. PubMed ID: 31328835 [TBL] [Abstract][Full Text] [Related]
13. High Energy and Power Zinc Ion Capacitors: A Dual-Ion Adsorption and Reversible Chemical Adsorption Coupling Mechanism. Wang L; Peng M; Chen J; Tang X; Li L; Hu T; Yuan K; Chen Y ACS Nano; 2022 Feb; 16(2):2877-2888. PubMed ID: 35129326 [TBL] [Abstract][Full Text] [Related]
14. Investigation of a Biomass Hydrogel Electrolyte Naturally Stabilizing Cathodes for Zinc-Ion Batteries. Dong H; Li J; Zhao S; Jiao Y; Chen J; Tan Y; Brett DJL; He G; Parkin IP ACS Appl Mater Interfaces; 2021 Jan; 13(1):745-754. PubMed ID: 33370108 [TBL] [Abstract][Full Text] [Related]
15. Decreasing Water Activity Using the Tetrahydrofuran Electrolyte Additive for Highly Reversible Aqueous Zinc Metal Batteries. He W; Ren Y; Lamsal BS; Pokharel J; Zhang K; Kharel P; Wu JJ; Xian X; Cao Y; Zhou Y ACS Appl Mater Interfaces; 2023 Feb; 15(5):6647-6656. PubMed ID: 36696100 [TBL] [Abstract][Full Text] [Related]
16. High-Power and Ultralong-Life Aqueous Zinc-Ion Hybrid Capacitors Based on Pseudocapacitive Charge Storage. Dong L; Yang W; Yang W; Wang C; Li Y; Xu C; Wan S; He F; Kang F; Wang G Nanomicro Lett; 2019 Oct; 11(1):94. PubMed ID: 34138030 [TBL] [Abstract][Full Text] [Related]
17. Sulfur-Defect-Induced TiS Wang C; Zhao C; Pu X; Zeng Y; Wei Y; Cao Y; Chen Z ACS Appl Mater Interfaces; 2024 Apr; 16(14):17637-17648. PubMed ID: 38549247 [TBL] [Abstract][Full Text] [Related]
18. Surface Protection and Interface Regulation for Zn Anode via 1-Hydroxy Ethylidene-1,1-Diphosphonic Acid Electrolyte Additive toward High-Performance Aqueous Batteries. Li M; Xie K; Peng R; Yuan B; Wang Q; Wang C Small; 2022 Apr; 18(13):e2107398. PubMed ID: 35083869 [TBL] [Abstract][Full Text] [Related]
19. Hydrophobic Organic-Electrolyte-Protected Zinc Anodes for Aqueous Zinc Batteries. Cao L; Li D; Deng T; Li Q; Wang C Angew Chem Int Ed Engl; 2020 Oct; 59(43):19292-19296. PubMed ID: 32638488 [TBL] [Abstract][Full Text] [Related]
20. High-Efficiency and Stable Zn-Na Guo G; Tan X; Wang K; Zhang H ChemSusChem; 2022 Jun; 15(11):e202200313. PubMed ID: 35344279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]