BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 35355389)

  • 1. Engineering the Compositional Architecture of Core-Shell Upconverting Lanthanide-Doped Nanoparticles for Optimal Luminescent Donor in Resonance Energy Transfer: The Effects of Energy Migration and Storage.
    Pilch-Wrobel A; Kotulska AM; Lahtinen S; Soukka T; Bednarkiewicz A
    Small; 2022 May; 18(18):e2200464. PubMed ID: 35355389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upconversion FRET quantitation: the role of donor photoexcitation mode and compositional architecture on the decay and intensity based responses.
    Kotulska AM; Pilch-Wróbel A; Lahtinen S; Soukka T; Bednarkiewicz A
    Light Sci Appl; 2022 Aug; 11(1):256. PubMed ID: 35986019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Er
    Francés-Soriano L; Peruffo N; Natile MM; Hildebrandt N
    Analyst; 2020 Apr; 145(7):2543-2553. PubMed ID: 32043497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing Upconversion Nanoparticles for FRET Biosensing.
    Pini F; Francés-Soriano L; Andrigo V; Natile MM; Hildebrandt N
    ACS Nano; 2023 Mar; 17(5):4971-4984. PubMed ID: 36867492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy Transfer between Tm-Doped Upconverting Nanoparticles and a Small Organic Dye with Large Stokes Shift.
    López de Guereñu A; Bastian P; Wessig P; John L; Kumke MU
    Biosensors (Basel); 2019 Jan; 9(1):. PubMed ID: 30626081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance Energy Transfer to Track the Motion of Lanthanide Ions-What Drives the Intermixing in Core-Shell Upconverting Nanoparticles?
    Bastian PU; Robel N; Schmidt P; Schrumpf T; Günter C; Roddatis V; Kumke MU
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure.
    Li X; Zhang F; Zhao D
    Chem Soc Rev; 2015 Mar; 44(6):1346-78. PubMed ID: 25052250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shaping Luminescent Properties of Yb
    Pilch A; Würth C; Kaiser M; Wawrzyńczyk D; Kurnatowska M; Arabasz S; Prorok K; Samoć M; Strek W; Resch-Genger U; Bednarkiewicz A
    Small; 2017 Dec; 13(47):. PubMed ID: 29116668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance Energy Transfer in Upconversion Nanoplatforms for Selective Biodetection.
    Su Q; Feng W; Yang D; Li F
    Acc Chem Res; 2017 Jan; 50(1):32-40. PubMed ID: 27983801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered lanthanide-doped upconversion nanoparticles for biosensing and bioimaging application.
    Li Y; Chen C; Liu F; Liu J
    Mikrochim Acta; 2022 Feb; 189(3):109. PubMed ID: 35175435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating spectral overlap with the degree of quenching in UCP luminescence energy transfer systems.
    Burgess L; Wilson H; Jones AR; Hay S; Natrajan LS
    Methods Appl Fluoresc; 2020 Jul; 8(4):. PubMed ID: 32698171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle-Size-Dependent Förster Resonance Energy Transfer from Upconversion Nanoparticles to Organic Dyes.
    Muhr V; Würth C; Kraft M; Buchner M; Baeumner AJ; Resch-Genger U; Hirsch T
    Anal Chem; 2017 May; 89(9):4868-4874. PubMed ID: 28325045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Turn-on detection of a cancer marker based on near-infrared luminescence energy transfer from NaYF4:Yb,Tm/NaGdF4 core-shell upconverting nanoparticles to gold nanorods.
    Chen H; Guan Y; Wang S; Ji Y; Gong M; Wang L
    Langmuir; 2014 Nov; 30(43):13085-91. PubMed ID: 25296290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of the Activator and Sensitizer Ion Distributions in NaYF
    Clark PCJ; Andresen E; Sear MJ; Favaro M; Girardi L; van de Krol R; Resch-Genger U; Starr DE
    Small; 2022 Jul; 18(29):e2107976. PubMed ID: 35732601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles.
    Wang M; Hou W; Mi CC; Wang WX; Xu ZR; Teng HH; Mao CB; Xu SK
    Anal Chem; 2009 Nov; 81(21):8783-9. PubMed ID: 19807113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A protected excitation-energy reservoir for efficient upconversion luminescence.
    Huang K; Liu H; Kraft M; Shikha S; Zheng X; Ågren H; Würth C; Resch-Genger U; Zhang Y
    Nanoscale; 2017 Dec; 10(1):250-259. PubMed ID: 29210408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perspectives and challenges of photon-upconversion nanoparticles - Part II: bioanalytical applications.
    Gorris HH; Resch-Genger U
    Anal Bioanal Chem; 2017 Oct; 409(25):5875-5890. PubMed ID: 28687881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual Activity of Rose Bengal Functionalized to Albumin-Coated Lanthanide-Doped Upconverting Nanoparticles: Targeting and Photodynamic Therapy.
    Sabri T; Pawelek PD; Capobianco JA
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):26947-26953. PubMed ID: 30028124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activators Confined Upconversion Nanoprobe with Near-Unity Förster Resonance Energy Transfer Efficiency for Ultrasensitive Detection.
    Chen T; Shang Y; Zhu Y; Hao S; Yang C
    ACS Appl Mater Interfaces; 2022 May; 14(17):19826-19835. PubMed ID: 35438973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combating Concentration Quenching in Upconversion Nanoparticles.
    Chen B; Wang F
    Acc Chem Res; 2020 Feb; 53(2):358-367. PubMed ID: 31633900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.