These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35355825)

  • 1. Static and Fatigue Load Bearing Investigation on Porous Structure Titanium Additively Manufactured Anterior Cervical Cages.
    Kumar M; Meena VK; Singh S
    Biomed Res Int; 2022; 2022():6534749. PubMed ID: 35355825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subsidence and fusion performance of a 3D-printed porous interbody cage with stress-optimized body lattice and microporous endplates - a comprehensive mechanical and biological analysis.
    Fogel G; Martin N; Lynch K; Pelletier MH; Wills D; Wang T; Walsh WR; Williams GM; Malik J; Peng Y; Jekir M
    Spine J; 2022 Jun; 22(6):1028-1037. PubMed ID: 35017054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical comparison of subsidence performance among three modern porous lateral cage designs.
    Yee-Yanagishita C; Fogel G; Douglas B; Essayan G; Poojary B; Martin N; Williams GM; Peng Y; Jekir M
    Clin Biomech (Bristol, Avon); 2022 Oct; 99():105764. PubMed ID: 36130418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Static and dynamic fatigue behavior of topology designed and conventional 3D printed bioresorbable PCL cervical interbody fusion devices.
    Knutsen AR; Borkowski SL; Ebramzadeh E; Flanagan CL; Hollister SJ; Sangiorgio SN
    J Mech Behav Biomed Mater; 2015 Sep; 49():332-42. PubMed ID: 26072198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subsidence resulting from simulated postoperative neck movements: an in vitro investigation with a new cervical fusion cage.
    Wilke HJ; Kettler A; Goetz C; Claes L
    Spine (Phila Pa 1976); 2000 Nov; 25(21):2762-70. PubMed ID: 11064521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue crack propagation in additively manufactured porous biomaterials.
    Hedayati R; Amin Yavari S; Zadpoor AA
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():457-463. PubMed ID: 28482550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vitro and In Vivo Comparison of Bone Growth Characteristics in Additive-Manufactured Porous Titanium, Nonporous Titanium, and Porous Tantalum Interbody Cages.
    Wu MH; Lee MH; Wu C; Tsai PI; Hsu WB; Huang SI; Lin TH; Yang KY; Chen CY; Chen SH; Lee CY; Huang TJ; Tsau FH; Li YY
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of interbody fusion cage design on the stability of the instrumented spine in response to cyclic loading: an experimental study.
    Alkalay RN; Adamson R; Groff MW
    Spine J; 2018 Oct; 18(10):1867-1876. PubMed ID: 29526639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Cervical Interbody Cage Morphology, Material Composition, and Substrate Density on Cage Subsidence.
    Suh PB; Puttlitz C; Lewis C; Bal BS; McGilvray K
    J Am Acad Orthop Surg; 2017 Feb; 25(2):160-168. PubMed ID: 28009709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical investigation into the structural design of porous additive manufactured cages using numerical and experimental approaches.
    Tsai PI; Hsu CC; Chen SY; Wu TH; Huang CC
    Comput Biol Med; 2016 Sep; 76():14-23. PubMed ID: 27392226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surgical planning, manufacturing and implantation of an individualized cervical fusion titanium cage using patient-specific data.
    Spetzger U; Frasca M; König SA
    Eur Spine J; 2016 Jul; 25(7):2239-46. PubMed ID: 26931333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of applied stress ratio on the fatigue behavior of additively manufactured porous biomaterials under compressive loading.
    de Krijger J; Rans C; Van Hooreweder B; Lietaert K; Pouran B; Zadpoor AA
    J Mech Behav Biomed Mater; 2017 Jun; 70():7-16. PubMed ID: 27998687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical Analysis of Porous Additive Manufactured Cages for Lateral Lumbar Interbody Fusion: A Finite Element Analysis.
    Zhang Z; Li H; Fogel GR; Liao Z; Li Y; Liu W
    World Neurosurg; 2018 Mar; 111():e581-e591. PubMed ID: 29288855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Expandable and Fixed Interbody Cages in a Human Cadaver Corpectomy Model: Fatigue Characteristics.
    Pekmezci M; Tang JA; Cheng L; Modak A; McClellan RT; Buckley JM; Ames CP
    Clin Spine Surg; 2016 Nov; 29(9):387-393. PubMed ID: 22925989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Stabilizing effect and sintering tendency of 3 different cages and bone cement for fusion of cervical vertebrae segments].
    Wilke HJ; Kettler A; Claes L
    Orthopade; 2002 May; 31(5):472-80. PubMed ID: 12089797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element model predicts the biomechanical performance of transforaminal lumbar interbody fusion with various porous additive manufactured cages.
    Zhang Z; Li H; Fogel GR; Xiang D; Liao Z; Liu W
    Comput Biol Med; 2018 Apr; 95():167-174. PubMed ID: 29501735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical performance of cervical intervertebral body fusion devices: A systematic analysis of data submitted to the Food and Drug Administration.
    Peck JH; Sing DC; Nagaraja S; Peck DG; Lotz JC; Dmitriev AE
    J Biomech; 2017 Mar; 54():26-32. PubMed ID: 28256243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Safety of anterior cervical discectomy and fusion using titanium-coated polyetheretherketone stand-alone cages: Multicenter prospective study of incidence of cage subsidence.
    Nakanishi Y; Naito K; Yamagata T; Masaki Yoshimura ; Shimokawa N; Nishikawa M; Ohata K; Takami T
    J Clin Neurosci; 2020 Apr; 74():47-54. PubMed ID: 31983642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel 3D printed lattice structure titanium cages evaluated in an ovine model of interbody fusion.
    Johnson JW; Gadomski B; Labus K; Stewart H; Nelson B; Seim H; Regan D; von Stade D; Kelly C; Horne P; Gall K; Easley J
    JOR Spine; 2023 Sep; 6(3):e1268. PubMed ID: 37780834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new lumbar posterior fixation system, the memory metal spinal system: an in-vitro mechanical evaluation.
    Kok D; Firkins PJ; Wapstra FH; Veldhuizen AG
    BMC Musculoskelet Disord; 2013 Sep; 14():269. PubMed ID: 24047109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.