These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35355833)

  • 1. Designing Prosthetic Hands With Embodied Intelligence: The KIT Prosthetic Hands.
    Weiner P; Starke J; Rader S; Hundhausen F; Asfour T
    Front Neurorobot; 2022; 16():815716. PubMed ID: 35355833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Embedded, Multi-Modal Sensor System for Scalable Robotic and Prosthetic Hand Fingers.
    Weiner P; Neef C; Shibata Y; Nakamura Y; Asfour T
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31878001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control?
    Ninu A; Dosen S; Muceli S; Rattay F; Dietl H; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1041-52. PubMed ID: 24801625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EMG Biofeedback for online predictive control of grasping force in a myoelectric prosthesis.
    Dosen S; Markovic M; Somer K; Graimann B; Farina D
    J Neuroeng Rehabil; 2015 Jun; 12():55. PubMed ID: 26088323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Experimental Evaluation of a Sensorimotor-inspired Grasping Strategy for Dexterous Prosthetic Hands.
    Zhang T; Zhang N; Li Y; Zeng B; Jiang L
    IEEE Trans Neural Syst Rehabil Eng; 2022 Dec; PP():. PubMed ID: 37015398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Implementation of Arch Function for Adaptive Multi-Finger Prosthetic Hand.
    Yong X; Jing X; Wu X; Jiang Y; Yokoi H
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31412642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research on Adaptive Grasping with a Prosthetic Hand Based on Perceptual Information on Hardness and Surface Roughness.
    Wang Y; Tian Y; Li Z; She H; Jiang Z
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel design method of anthropomorphic prosthetic hands for reproducing human hand grasping.
    Sun B; Xiong C; Chen W; Zhang Q; Mao L; Zhang Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6215-21. PubMed ID: 25571417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Adaptive, Lightweight, Body-Powered System for Prosthetic Hands Equipped with a Selectively Lockable Differential Mechanism.
    Busby B; Gao G; Liarokapis M
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-7. PubMed ID: 38083564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EMG-driven shared human-robot compliant control for in-hand object manipulation in hand prostheses.
    Khadivar F; Mendez V; Correia C; Batzianoulis I; Billard A; Micera S
    J Neural Eng; 2022 Dec; 19(6):. PubMed ID: 36384035
    [No Abstract]   [Full Text] [Related]  

  • 11. Gaussian Process Autoregression for Simultaneous Proportional Multi-Modal Prosthetic Control With Natural Hand Kinematics.
    Xiloyannis M; Gavriel C; Thomik AAC; Faisal AA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1785-1801. PubMed ID: 28880183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grasping Ability and Motion Synergies in Affordable Tendon-Driven Prosthetic Hands Controlled by Able-Bodied Subjects.
    Llop-Harillo I; Pérez-González A; Andrés-Esperanza J
    Front Neurorobot; 2020; 14():57. PubMed ID: 32982713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Upper-Limb Electromyogram Classification of Reaching-to-Grasping Tasks Based on Convolutional Neural Networks for Control of a Prosthetic Hand.
    Kim KT; Park S; Lim TH; Lee SJ
    Front Neurosci; 2021; 15():733359. PubMed ID: 34712114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skin Stretch Haptic Feedback to Convey Closure Information in Anthropomorphic, Under-Actuated Upper Limb Soft Prostheses.
    Battaglia E; Clark JP; Bianchi M; Catalano MG; Bicchi A; O'Malley MK
    IEEE Trans Haptics; 2019; 12(4):508-520. PubMed ID: 31071053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
    Markovic M; Dosen S; Popovic D; Graimann B; Farina D
    J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HANDS: a multimodal dataset for modeling toward human grasp intent inference in prosthetic hands.
    Han M; Günay SY; Schirner G; Padır T; Erdoğmuş D
    Intell Serv Robot; 2020 Jan; 13(1):179-185. PubMed ID: 33312264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A science-driven method for determining morphological parameters of prosthetic hands.
    Sun BY; Gong X; Xiong CH; Xie ZL; Liang J
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33202385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passive prosthetic hands and tools: A literature review.
    Maat B; Smit G; Plettenburg D; Breedveld P
    Prosthet Orthot Int; 2018 Feb; 42(1):66-74. PubMed ID: 28190380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Principal components analysis based control of a multi-DoF underactuated prosthetic hand.
    Matrone GC; Cipriani C; Secco EL; Magenes G; Carrozza MC
    J Neuroeng Rehabil; 2010 Apr; 7():16. PubMed ID: 20416036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Fine Control of Grasping Force during Hand-Object Interactions for a Soft Synergy-Inspired Myoelectric Prosthetic Hand.
    Fu Q; Santello M
    Front Neurorobot; 2017; 11():71. PubMed ID: 29375360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.