These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 35356389)
1. Enhanced production of l-sorbose by systematic engineering of dehydrogenases in Liu L; Chen Y; Yu S; Chen J; Zhou J Synth Syst Biotechnol; 2022 Jun; 7(2):730-737. PubMed ID: 35356389 [TBL] [Abstract][Full Text] [Related]
2. Stepwise metabolic engineering of Gluconobacter oxydans WSH-003 for the direct production of 2-keto-L-gulonic acid from D-sorbitol. Gao L; Hu Y; Liu J; Du G; Zhou J; Chen J Metab Eng; 2014 Jul; 24():30-7. PubMed ID: 24792618 [TBL] [Abstract][Full Text] [Related]
3. Enhanced production of L-sorbose from D-sorbitol by improving the mRNA abundance of sorbitol dehydrogenase in Gluconobacter oxydans WSH-003. Xu S; Wang X; Du G; Zhou J; Chen J Microb Cell Fact; 2014 Oct; 13():146. PubMed ID: 25323199 [TBL] [Abstract][Full Text] [Related]
4. Identification of NAD-Dependent Xylitol Dehydrogenase from Liu L; Zeng W; Du G; Chen J; Zhou J ACS Omega; 2019 Sep; 4(12):15074-15080. PubMed ID: 31552350 [No Abstract] [Full Text] [Related]
5. Optimized synthesis of L-sorbose by C(5)-dehydrogenation of D-sorbitol with Gluconobacter oxydans. De Wulf P; Soetaert W; Vandamme EJ Biotechnol Bioeng; 2000 Aug; 69(3):339-43. PubMed ID: 10861414 [TBL] [Abstract][Full Text] [Related]
6. Continuous co-production of biomass and bio-oxidized metabolite (sorbose) using Gluconobacter oxydans in a high-oxygen tension bioreactor. Zhou X; Hua X; Zhou X; Xu Y; Zhang W Bioresour Technol; 2019 Apr; 277():221-224. PubMed ID: 30658939 [TBL] [Abstract][Full Text] [Related]
7. Enhanced production of L-sorbose in an industrial Gluconobacter oxydans strain by identification of a strong promoter based on proteomics analysis. Hu Y; Wan H; Li J; Zhou J J Ind Microbiol Biotechnol; 2015 Jul; 42(7):1039-47. PubMed ID: 25952118 [TBL] [Abstract][Full Text] [Related]
8. Cloning of genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-L-gulonate, a precursor of L-ascorbic acid, in a recombinant G. oxydans strain. Saito Y; Ishii Y; Hayashi H; Imao Y; Akashi T; Yoshikawa K; Noguchi Y; Soeda S; Yoshida M; Niwa M; Hosoda J; Shimomura K Appl Environ Microbiol; 1997 Feb; 63(2):454-60. PubMed ID: 9023923 [TBL] [Abstract][Full Text] [Related]
9. Improvement of pyrroloquinoline quinone-dependent d-sorbitol dehydrogenase activity from Gluconobacter oxydans via expression of Vitreoscilla hemoglobin and regulation of dissolved oxygen tension for the biosynthesis of 6-(N-hydroxyethyl)-amino-6-deoxy-α-l-sorbofuranose. Liu D; Ke X; Hu ZC; Zheng YG J Biosci Bioeng; 2021 May; 131(5):518-524. PubMed ID: 33487552 [TBL] [Abstract][Full Text] [Related]
10. Combined evolutionary and metabolic engineering improve 2-keto-L-gulonic acid production in Gluconobacter oxydans WSH-004. Li D; Liu L; Qin Z; Yu S; Zhou J Bioresour Technol; 2022 Jun; 354():127107. PubMed ID: 35381333 [TBL] [Abstract][Full Text] [Related]
11. Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM2343 for boosting 5-keto-D-gluconic acid accumulation. Yuan J; Wu M; Lin J; Yang L BMC Biotechnol; 2016 May; 16(1):42. PubMed ID: 27189063 [TBL] [Abstract][Full Text] [Related]
12. Systematic characterization of sorbose/sorbosone dehydrogenases and sorbosone dehydrogenases from Ketogulonicigenium vulgare WSH-001. Wang P; Zeng W; Du G; Zhou J; Chen J J Biotechnol; 2019 Aug; 301():24-34. PubMed ID: 31136757 [TBL] [Abstract][Full Text] [Related]
13. Combinational expression of D-sorbitol dehydrogenase and pyrroloquinoline quinone increases 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose production by Gluconobacter oxydans through cofactor manipulation. Liu D; Ke X; Hu ZC; Zheng YG Enzyme Microb Technol; 2020 Nov; 141():109670. PubMed ID: 33051020 [TBL] [Abstract][Full Text] [Related]
14. Production of 2-keto-L-gulonic acid by metabolically engineered Escherichia coli. Zeng W; Wang P; Li N; Li J; Chen J; Zhou J Bioresour Technol; 2020 Dec; 318():124069. PubMed ID: 32916460 [TBL] [Abstract][Full Text] [Related]
15. Membrane-bound pyrroloquinoline quinone-dependent dehydrogenase in Gluconobacter oxydans M5, responsible for production of 6-(2-hydroxyethyl) amino-6-deoxy-L-sorbose. Yang XP; Wei LJ; Lin JP; Yin B; Wei DZ Appl Environ Microbiol; 2008 Aug; 74(16):5250-3. PubMed ID: 18502922 [TBL] [Abstract][Full Text] [Related]
17. Rapid Enabling of Liu L; Zeng W; Yu S; Li J; Zhou J Front Bioeng Biotechnol; 2021; 9():731247. PubMed ID: 34540816 [No Abstract] [Full Text] [Related]
18. Synergistic improvement of PQQ-dependent D-sorbitol dehydrogenase activity from Gluconobacter oxydans for the biosynthesis of miglitol precursor 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose. Ke X; Pan-Hong Y; Hu ZC; Chen L; Sun XQ; Zheng YG J Biotechnol; 2019 Jul; 300():55-62. PubMed ID: 31100333 [TBL] [Abstract][Full Text] [Related]
19. Characterization of a group of pyrroloquinoline quinone-dependent dehydrogenases that are involved in the conversion of L-sorbose to 2-Keto-L-gulonic acid in Ketogulonicigenium vulgare WSH-001. Gao L; Du G; Zhou J; Chen J; Liu J Biotechnol Prog; 2013; 29(6):1398-404. PubMed ID: 23970495 [TBL] [Abstract][Full Text] [Related]
20. Overcoming NADPH product inhibition improves D-sorbitol conversion to L-sorbose. Kim TS; Gao H; Li J; Kalia VC; Muthusamy K; Sohng JK; Kim IW; Lee JK Sci Rep; 2019 Jan; 9(1):815. PubMed ID: 30692560 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]