These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 35356546)

  • 1. Deep learning in prediction of intrinsic disorder in proteins.
    Zhao B; Kurgan L
    Comput Struct Biotechnol J; 2022; 20():1286-1294. PubMed ID: 35356546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surveying over 100 predictors of intrinsic disorder in proteins.
    Zhao B; Kurgan L
    Expert Rev Proteomics; 2021 Dec; 18(12):1019-1029. PubMed ID: 34894985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational prediction of disordered binding regions.
    Basu S; Kihara D; Kurgan L
    Comput Struct Biotechnol J; 2023; 21():1487-1497. PubMed ID: 36851914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative evaluation of AlphaFold2 and disorder predictors for prediction of intrinsic disorder, disorder content and fully disordered proteins.
    Zhao B; Ghadermarzi S; Kurgan L
    Comput Struct Biotechnol J; 2023; 21():3248-3258. PubMed ID: 38213902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate and Fast Prediction of Intrinsically Disordered Protein by Multiple Protein Language Models and Ensemble Learning.
    Xu S; Onoda A
    J Chem Inf Model; 2024 Apr; 64(7):2901-2911. PubMed ID: 37883249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of secondary structure population and intrinsic disorder of proteins using multitask deep learning.
    Ying X; Leier A; Marquez-Lago TT; Xie J; Jimeno Yepes AJ; Whisstock JC; Wilson C; Song J
    AMIA Annu Symp Proc; 2020; 2020():1325-1334. PubMed ID: 33936509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks.
    Hanson J; Yang Y; Paliwal K; Zhou Y
    Bioinformatics; 2017 Mar; 33(5):685-692. PubMed ID: 28011771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical assessment of protein intrinsic disorder prediction (CAID) - Results of round 2.
    Conte AD; Mehdiabadi M; Bouhraoua A; Miguel Monzon A; Tosatto SCE; Piovesan D
    Proteins; 2023 Dec; 91(12):1925-1934. PubMed ID: 37621223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A deep neural network approach for learning intrinsic protein-RNA binding preferences.
    Ben-Bassat I; Chor B; Orenstein Y
    Bioinformatics; 2018 Sep; 34(17):i638-i646. PubMed ID: 30423078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic protein disorder and conditional folding in AlphaFoldDB.
    Piovesan D; Monzon AM; Tosatto SCE
    Protein Sci; 2022 Nov; 31(11):e4466. PubMed ID: 36210722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepDISOBind: accurate prediction of RNA-, DNA- and protein-binding intrinsically disordered residues with deep multi-task learning.
    Zhang F; Zhao B; Shi W; Li M; Kurgan L
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34905768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNN-Dom: predicting protein domain boundary from sequence alone by deep neural network.
    Shi Q; Chen W; Huang S; Jin F; Dong Y; Wang Y; Xue Z
    Bioinformatics; 2019 Dec; 35(24):5128-5136. PubMed ID: 31197306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical assessment of protein intrinsic disorder prediction.
    Necci M; Piovesan D; ; ; Tosatto SCE
    Nat Methods; 2021 May; 18(5):472-481. PubMed ID: 33875885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RFPR-IDP: reduce the false positive rates for intrinsically disordered protein and region prediction by incorporating both fully ordered proteins and disordered proteins.
    Liu Y; Wang X; Liu B
    Brief Bioinform; 2021 Mar; 22(2):2000-2011. PubMed ID: 32112084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. flDPnn: Accurate intrinsic disorder prediction with putative propensities of disorder functions.
    Hu G; Katuwawala A; Wang K; Wu Z; Ghadermarzi S; Gao J; Kurgan L
    Nat Commun; 2021 Jul; 12(1):4438. PubMed ID: 34290238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. cnnAlpha: Protein disordered regions prediction by reduced amino acid alphabets and convolutional neural networks.
    Oberti M; Vaisman II
    Proteins; 2020 Nov; 88(11):1472-1481. PubMed ID: 32535960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Prediction of Intrinsic Disorder in Proteins.
    Meng F; Uversky V; Kurgan L
    Curr Protoc Protein Sci; 2017 Apr; 88():2.16.1-2.16.14. PubMed ID: 28369666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Assessment of Intrinsic Disorder Predictions with a Focus on Protein and Nucleic Acid-Binding Proteins.
    Katuwawala A; Kurgan L
    Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33291838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of Disordered Linker Predictions in the CAID2 Experiment.
    Wang K; Hu G; Wu Z; Uversky VN; Kurgan L
    Biomolecules; 2024 Feb; 14(3):. PubMed ID: 38540707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.