These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 35356546)

  • 21. RFPR-IDP: reduce the false positive rates for intrinsically disordered protein and region prediction by incorporating both fully ordered proteins and disordered proteins.
    Liu Y; Wang X; Liu B
    Brief Bioinform; 2021 Mar; 22(2):2000-2011. PubMed ID: 32112084
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A New Hybrid Neural Network Deep Learning Method for Protein-Ligand Binding Affinity Prediction and De Novo Drug Design.
    Limbu S; Dakshanamurthy S
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430386
    [TBL] [Abstract][Full Text] [Related]  

  • 23. flDPnn2: Accurate and Fast Predictor of Intrinsic Disorder in Proteins.
    Wang K; Hu G; Basu S; Kurgan L
    J Mol Biol; 2024 Sep; 436(17):168605. PubMed ID: 39237195
    [TBL] [Abstract][Full Text] [Related]  

  • 24. cnnAlpha: Protein disordered regions prediction by reduced amino acid alphabets and convolutional neural networks.
    Oberti M; Vaisman II
    Proteins; 2020 Nov; 88(11):1472-1481. PubMed ID: 32535960
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational Prediction of Intrinsic Disorder in Proteins.
    Meng F; Uversky V; Kurgan L
    Curr Protoc Protein Sci; 2017 Apr; 88():2.16.1-2.16.14. PubMed ID: 28369666
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNN-Dom: predicting protein domain boundary from sequence alone by deep neural network.
    Shi Q; Chen W; Huang S; Jin F; Dong Y; Wang Y; Xue Z
    Bioinformatics; 2019 Dec; 35(24):5128-5136. PubMed ID: 31197306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic prediction of global monthly burned area with hybrid deep neural networks.
    Zhang G; Wang M; Liu K
    Ecol Appl; 2022 Jul; 32(5):e2610. PubMed ID: 35366041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Would large dataset sample size unveil the potential of deep neural networks for improved genome-enabled prediction of complex traits? The case for body weight in broilers.
    Passafaro TL; Lopes FB; Dórea JRR; Craven M; Breen V; Hawken RJ; Rosa GJM
    BMC Genomics; 2020 Nov; 21(1):771. PubMed ID: 33167865
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MemDis: Predicting Disordered Regions in Transmembrane Proteins.
    Dobson L; Tusnády GE
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830151
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions.
    Deng X; Gumm J; Karki S; Eickholt J; Cheng J
    Int J Mol Sci; 2015 Jul; 16(7):15384-404. PubMed ID: 26198229
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The applications of deep learning algorithms on in silico druggable proteins identification.
    Yu L; Xue L; Liu F; Li Y; Jing R; Luo J
    J Adv Res; 2022 Nov; 41():219-231. PubMed ID: 36328750
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identifying molecular recognition features in intrinsically disordered regions of proteins by transfer learning.
    Hanson J; Litfin T; Paliwal K; Zhou Y
    Bioinformatics; 2020 Feb; 36(4):1107-1113. PubMed ID: 31504193
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CAID prediction portal: a comprehensive service for predicting intrinsic disorder and binding regions in proteins.
    Del Conte A; Bouhraoua A; Mehdiabadi M; Clementel D; Monzon AM; ; Tosatto SCE; Piovesan D
    Nucleic Acids Res; 2023 Jul; 51(W1):W62-W69. PubMed ID: 37246642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overview Update: Computational Prediction of Intrinsic Disorder in Proteins.
    Uversky VN; Kurgan L
    Curr Protoc; 2023 Jun; 3(6):e802. PubMed ID: 37310199
    [TBL] [Abstract][Full Text] [Related]  

  • 35. IDP-Seq2Seq: identification of intrinsically disordered regions based on sequence to sequence learning.
    Tang YJ; Pang YH; Liu B
    Bioinformatics; 2021 Jan; 36(21):5177-5186. PubMed ID: 32702119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting Postoperative Mortality With Deep Neural Networks and Natural Language Processing: Model Development and Validation.
    Chen PF; Chen L; Lin YK; Li GH; Lai F; Lu CW; Yang CY; Chen KC; Lin TY
    JMIR Med Inform; 2022 May; 10(5):e38241. PubMed ID: 35536634
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Taxonomy-specific assessment of intrinsic disorder predictions at residue and region levels in higher eukaryotes, protists, archaea, bacteria and viruses.
    Basu S; Kurgan L
    Comput Struct Biotechnol J; 2024 Dec; 23():1968-1977. PubMed ID: 38765610
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accurate Ab Initio and Template-Based Prediction of Short Intrinsically-Disordered Regions by Bidirectional Recurrent Neural Networks Trained on Large-Scale Datasets.
    Volpato V; Alshomrani B; Pollastri G
    Int J Mol Sci; 2015 Aug; 16(8):19868-85. PubMed ID: 26307973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. AUCpreD: proteome-level protein disorder prediction by AUC-maximized deep convolutional neural fields.
    Wang S; Ma J; Xu J
    Bioinformatics; 2016 Sep; 32(17):i672-i679. PubMed ID: 27587688
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Investigation of Deep Learning Models for EEG-Based Emotion Recognition.
    Zhang Y; Chen J; Tan JH; Chen Y; Chen Y; Li D; Yang L; Su J; Huang X; Che W
    Front Neurosci; 2020; 14():622759. PubMed ID: 33424547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.