These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 35356546)

  • 41. Protein intrinsically disordered region prediction by combining neural architecture search and multi-objective genetic algorithm.
    Tang YJ; Yan K; Zhang X; Tian Y; Liu B
    BMC Biol; 2023 Sep; 21(1):188. PubMed ID: 37674132
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DeepCNF-D: Predicting Protein Order/Disorder Regions by Weighted Deep Convolutional Neural Fields.
    Wang S; Weng S; Ma J; Tang Q
    Int J Mol Sci; 2015 Jul; 16(8):17315-30. PubMed ID: 26230689
    [TBL] [Abstract][Full Text] [Related]  

  • 43. DisoLipPred: accurate prediction of disordered lipid-binding residues in protein sequences with deep recurrent networks and transfer learning.
    Katuwawala A; Zhao B; Kurgan L
    Bioinformatics; 2021 Dec; 38(1):115-124. PubMed ID: 34487138
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prediction of Disordered Regions in Proteins with Recurrent Neural Networks and Protein Dynamics.
    Orlando G; Raimondi D; Codicè F; Tabaro F; Vranken W
    J Mol Biol; 2022 Jun; 434(12):167579. PubMed ID: 35469832
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Accurate Single-Sequence Prediction of Protein Intrinsic Disorder by an Ensemble of Deep Recurrent and Convolutional Architectures.
    Hanson J; Paliwal K; Zhou Y
    J Chem Inf Model; 2018 Nov; 58(11):2369-2376. PubMed ID: 30395465
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tutorial: a guide for the selection of fast and accurate computational tools for the prediction of intrinsic disorder in proteins.
    Kurgan L; Hu G; Wang K; Ghadermarzi S; Zhao B; Malhis N; Erdős G; Gsponer J; Uversky VN; Dosztányi Z
    Nat Protoc; 2023 Nov; 18(11):3157-3172. PubMed ID: 37740110
    [TBL] [Abstract][Full Text] [Related]  

  • 47. QUARTERplus: Accurate disorder predictions integrated with interpretable residue-level quality assessment scores.
    Katuwawala A; Ghadermarzi S; Hu G; Wu Z; Kurgan L
    Comput Struct Biotechnol J; 2021; 19():2597-2606. PubMed ID: 34025946
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An unsupervised convolutional neural network method for estimation of intravoxel incoherent motion parameters.
    Huang HM
    Phys Med Biol; 2022 Oct; 67(21):. PubMed ID: 36228623
    [No Abstract]   [Full Text] [Related]  

  • 49. Metapredict: a fast, accurate, and easy-to-use predictor of consensus disorder and structure.
    Emenecker RJ; Griffith D; Holehouse AS
    Biophys J; 2021 Oct; 120(20):4312-4319. PubMed ID: 34480923
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Accuracy of protein-level disorder predictions.
    Katuwawala A; Oldfield CJ; Kurgan L
    Brief Bioinform; 2020 Sep; 21(5):1509-1522. PubMed ID: 31616935
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comprehensive review of methods for prediction of intrinsic disorder and its molecular functions.
    Meng F; Uversky VN; Kurgan L
    Cell Mol Life Sci; 2017 Sep; 74(17):3069-3090. PubMed ID: 28589442
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Deep Neural Network-based Handheld Diagnosis System for Autism Spectrum Disorder.
    Khullar V; Singh HP; Bala M
    Neurol India; 2021; 69(1):66-74. PubMed ID: 33642273
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent developments in deep learning applied to protein structure prediction.
    Kandathil SM; Greener JG; Jones DT
    Proteins; 2019 Dec; 87(12):1179-1189. PubMed ID: 31589782
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 55. IDPpred: a new sequence-based predictor for identification of intrinsically disordered protein with enhanced accuracy.
    Chaurasiya D; Mondal R; Lahiri T; Tripathi A; Ghinmine T
    J Biomol Struct Dyn; 2023 Dec; ():1-9. PubMed ID: 38079339
    [TBL] [Abstract][Full Text] [Related]  

  • 56. ESpritz: accurate and fast prediction of protein disorder.
    Walsh I; Martin AJ; Di Domenico T; Tosatto SC
    Bioinformatics; 2012 Feb; 28(4):503-9. PubMed ID: 22190692
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Computational prediction of functions of intrinsically disordered regions.
    Katuwawala A; Ghadermarzi S; Kurgan L
    Prog Mol Biol Transl Sci; 2019; 166():341-369. PubMed ID: 31521235
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Flatness Prediction of Cold Rolled Strip Based on Deep Neural Network with Improved Activation Function.
    Liu J; Song S; Wang J; Balaiti M; Song N; Li S
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062616
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identifying short disorder-to-order binding regions in disordered proteins with a deep convolutional neural network method.
    Fang C; Moriwaki Y; Tian A; Li C; Shimizu K
    J Bioinform Comput Biol; 2019 Feb; 17(1):1950004. PubMed ID: 30866736
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deep neural network-based prediction of tsunami wave attenuation by mangrove forests.
    Adytia D; Tarwidi D; Saepudin D; Husrin S; Kasim ARM; Romlie MF; Samsudin D
    MethodsX; 2024 Dec; 13():102791. PubMed ID: 38975289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.