These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35356561)

  • 1. Spatial and temporal variations in salt marsh microorganisms of the Wadden Sea.
    Rinke M; Maraun M; Scheu S
    Ecol Evol; 2022 Mar; 12(3):e8767. PubMed ID: 35356561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal dynamics and changing sea level as determinants of the community and trophic structure of oribatid mites in a salt marsh of the Wadden Sea.
    Winter M; Haynert K; Scheu S; Maraun M
    PLoS One; 2018; 13(11):e0207141. PubMed ID: 30408121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trophic structure and origin of resources of soil macrofauna in the salt marsh of the Wadden Sea: a stable isotope (
    Rinke M; Bendisch PM; Maraun M; Scheu S
    BMC Ecol Evol; 2022 Jun; 22(1):85. PubMed ID: 35761170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Inundation, Nutrient Availability and Plant Species Diversity on Fine Root Mass and Morphology Across a Saltmarsh Flooding Gradient.
    Redelstein R; Dinter T; Hertel D; Leuschner C
    Front Plant Sci; 2018; 9():98. PubMed ID: 29467778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salt marshes to adapt the flood defences along the Dutch Wadden Sea coast.
    van Loon-Steensma JM
    Mitig Adapt Strateg Glob Chang; 2015; 20(6):929-948. PubMed ID: 30197556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure of salt marsh soil mesofauna food webs - The prevalence of disturbance.
    Haynert K; Kiggen M; Klarner B; Maraun M; Scheu S
    PLoS One; 2017; 12(12):e0189645. PubMed ID: 29240806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salt marsh monitoring along the mid-Atlantic coast by Google Earth Engine enabled time series.
    Campbell AD; Wang Y
    PLoS One; 2020; 15(2):e0229605. PubMed ID: 32109951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estuarine Sediment Microbiomes from a Chronosequence of Restored Urban Salt Marshes.
    Morris N; Alldred M; Zarnoch C; Alter SE
    Microb Ecol; 2023 Apr; 85(3):916-930. PubMed ID: 36826588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stronger network connectivity with lower diversity of soil fungal community was presented in coastal marshes after sixteen years of freshwater restoration.
    Xiao R; Guo Y; Zhang M; Pan W; Wang JJ
    Sci Total Environ; 2020 Nov; 744():140623. PubMed ID: 32693270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vegetation zones as indicators of denitrification potential in salt marshes.
    Ooi SK; Barry A; Lawrence BA; Elphick CS; Helton AM
    Ecol Appl; 2022 Sep; 32(6):e2630. PubMed ID: 35403778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of sea level change on coastal soil organic matter, priming effects and prokaryotic community assembly.
    Dinter T; Geihser S; Gube M; Daniel R; Kuzyakov Y
    FEMS Microbiol Ecol; 2019 Oct; 95(10):. PubMed ID: 31425573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil microbial community development across a 32-year coastal wetland restoration time series and the relative importance of environmental factors.
    Abbott KM; Quirk T; Fultz LM
    Sci Total Environ; 2022 May; 821():153359. PubMed ID: 35081409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity, composition, and geographical distribution of microbial communities in California salt marsh sediments.
    Córdova-Kreylos AL; Cao Y; Green PG; Hwang HM; Kuivila KM; Lamontagne MG; Van De Werfhorst LC; Holden PA; Scow KM
    Appl Environ Microbiol; 2006 May; 72(5):3357-66. PubMed ID: 16672478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationships between ecosystem properties and sea-level rise vulnerability of tidal wetlands of the U.S. Mid-Atlantic.
    Elsey-Quirk T; Watson EB; Raper K; Kreeger D; Paudel B; Haaf L; Maxwell-Doyle M; Padeletti A; Reilly E; Velinsky DJ
    Environ Monit Assess; 2022 Mar; 194(4):292. PubMed ID: 35325310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High nutrient loads amplify carbon cycling across California and New York coastal wetlands but with ambiguous effects on marsh integrity and sustainability.
    Watson EB; Rahman FI; Woolfolk A; Meyer R; Maher N; Wigand C; Gray AB
    PLoS One; 2022; 17(9):e0273260. PubMed ID: 36084085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water sources of plant uptake along a salt marsh flooding gradient.
    Redelstein R; Coners H; Knohl A; Leuschner C
    Oecologia; 2018 Oct; 188(2):607-622. PubMed ID: 30051213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency.
    Schile LM; Callaway JC; Morris JT; Stralberg D; Parker VT; Kelly M
    PLoS One; 2014; 9(2):e88760. PubMed ID: 24551156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape.
    Yang WH; Silver WL
    Glob Chang Biol; 2016 Jun; 22(6):2228-37. PubMed ID: 26718748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wetland loss patterns and inundation-productivity relationships prognosticate widespread salt for southern New England.
    Watson EB; Wigand C; Davey EW; Andrews HM; Bishop J; Raposa KB
    Estuaries Coast; 2017 May; 40(3):662-681. PubMed ID: 30008627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bromine soil/sediment enrichment in tidal salt marshes as a potential indicator of climate changes driven by solar activity: New insights from W coast Portuguese estuaries.
    Moreno J; Fatela F; Leorri E; Moreno F; Freitas MC; Valente T; Araújo MF; Gómez-Navarro JJ; Guise L; Blake WH
    Sci Total Environ; 2017 Feb; 580():324-338. PubMed ID: 28034544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.