These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35356561)

  • 21. Salt Marsh Bacterial Communities before and after the Deepwater Horizon Oil Spill.
    Engel AS; Liu C; Paterson AT; Anderson LC; Turner RE; Overton EB
    Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28778895
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in soil microbial community composition during Phragmites australis straw decomposition in salt marshes with freshwater pumping.
    Wang C; Xiao R; Guo Y; Wang Q; Cui Y; Xiu Y; Ma Z; Zhang M
    Sci Total Environ; 2021 Mar; 762():143996. PubMed ID: 33360338
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Water salinity and inundation control soil carbon decomposition during salt marsh restoration: An incubation experiment.
    Wang F; Kroeger KD; Gonneea ME; Pohlman JW; Tang J
    Ecol Evol; 2019 Feb; 9(4):1911-1921. PubMed ID: 30847081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strong associations between plant genotypes and bacterial communities in a natural salt marsh.
    Zogg GP; Travis SE; Brazeau DA
    Ecol Evol; 2018 May; 8(9):4721-4730. PubMed ID: 29760911
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise?
    McKee KL; Vervaeke WC
    Glob Chang Biol; 2018 Mar; 24(3):1224-1238. PubMed ID: 29044820
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nutrient Enrichment Alters Salt Marsh Fungal Communities and Promotes Putative Fungal Denitrifiers.
    Kearns PJ; Bulseco-McKim AN; Hoyt H; Angell JH; Bowen JL
    Microb Ecol; 2019 Feb; 77(2):358-369. PubMed ID: 29978357
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Specificity of Salt Marsh Diazotrophs for Vegetation Zones and Plant Hosts: Results from a North American marsh.
    Lovell CR; Davis DA
    Front Microbiol; 2012; 3():84. PubMed ID: 22438851
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of elevated CO
    Reef R; Spencer T; Mӧller I; Lovelock CE; Christie EK; McIvor AL; Evans BR; Tempest JA
    Glob Chang Biol; 2017 Feb; 23(2):881-890. PubMed ID: 27310520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of benthic algal and animal communities by salt marsh plants: impact of shading.
    Whitcraft CR; Levin LA
    Ecology; 2007 Apr; 88(4):904-17. PubMed ID: 17536707
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sudden Vegetation Dieback in Atlantic and Gulf Coast Salt Marshes.
    Elmer WH; Useman S; Schneider RW; Marra RE; LaMondia JA; Mendelssohn IA; Jiménez-Gasco MM; Caruso FL
    Plant Dis; 2013 Apr; 97(4):436-445. PubMed ID: 30722244
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relationships between sediment microbial communities and pollutants in two California salt marshes.
    Cao Y; Cherr GN; Córdova-Kreylos AL; Fan TW; Green PG; Higashi RM; Lamontagne MG; Scow KM; Vines CA; Yuan J; Holden PA
    Microb Ecol; 2006 Nov; 52(4):619-33. PubMed ID: 17072678
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Salt marsh as a coastal filter for the oceans: changes in function with experimental increases in nitrogen loading and sea-level rise.
    Nelson JL; Zavaleta ES
    PLoS One; 2012; 7(8):e38558. PubMed ID: 22879873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discontinuities in soil strength contribute to destabilization of nutrient-enriched creeks.
    Wigand C; Watson EB; Martin R; Johnson DS; Warren RS; Hanson A; Davey E; Johnson R; Deegan L
    Ecosphere; 2018 Aug; 9(8):e02329. PubMed ID: 30505615
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controls on resilience and stability in a sediment-subsidized salt marsh.
    Stagg CL; Mendelssohn IA
    Ecol Appl; 2011 Jul; 21(5):1731-44. PubMed ID: 21830714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microspatial ecotone dynamics at a shifting range limit: plant-soil variation across salt marsh-mangrove interfaces.
    Yando ES; Osland MJ; Hester MW
    Oecologia; 2018 May; 187(1):319-331. PubMed ID: 29497834
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Short-term impact of sediment addition on plants and invertebrates in a southern California salt marsh.
    McAtee KJ; Thorne KM; Whitcraft CR
    PLoS One; 2020; 15(11):e0240597. PubMed ID: 33151998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plant-Mediated Rhizosphere Oxygenation in the Native Invasive Salt Marsh Grass
    Koop-Jakobsen K; Meier RJ; Mueller P
    Front Plant Sci; 2021; 12():669751. PubMed ID: 34177984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic responses and implications to coastal wetlands and the surrounding regions under sea level rise.
    Alizad K; Hagen SC; Medeiros SC; Bilskie MV; Morris JT; Balthis L; Buckel CA
    PLoS One; 2018; 13(10):e0205176. PubMed ID: 30312304
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of the Tagus estuary (Portugal).
    Carvalho LM; Caçador I; Martins-Loução M
    Mycorrhiza; 2001 Dec; 11(6):303-9. PubMed ID: 24549351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Seasonal flooding, soil salinity and primary production in northern prairie marshes.
    Neill C
    Oecologia; 1993 Oct; 95(4):499-505. PubMed ID: 28313290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.