These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35356775)

  • 1. GMP-Compliant Production of Autologous Adipose-Derived Stromal Cells in the NANT 001 Closed Automated Bioreactor.
    Fitzgerald JC; Duffy N; Cattaruzzi G; Vitrani F; Paulitti A; Mazzarol F; Mauro P; Sfiligoj A; Curcio F; Jones DM; McInerney V; Krawczyk J; Kelly J; Finnerty A; McDonagh K; McCabe U; Duggan M; Connolly L; Shaw G; Murphy M; Barry F
    Front Bioeng Biotechnol; 2022; 10():834267. PubMed ID: 35356775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Culture expansion of adipose derived stromal cells. A closed automated Quantum Cell Expansion System compared with manual flask-based culture.
    Haack-Sørensen M; Follin B; Juhl M; Brorsen SK; Søndergaard RH; Kastrup J; Ekblond A
    J Transl Med; 2016 Nov; 14(1):319. PubMed ID: 27852267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved GMP compliant approach to manipulate lipoaspirates, to cryopreserve stromal vascular fraction, and to expand adipose stem cells in xeno-free media.
    Agostini F; Rossi FM; Aldinucci D; Battiston M; Lombardi E; Zanolin S; Massarut S; Parodi PC; Da Ponte A; Tessitori G; Pivetta B; Durante C; Mazzucato M
    Stem Cell Res Ther; 2018 May; 9(1):130. PubMed ID: 29751821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical-scale expansion of adipose-derived stromal cells starting from stromal vascular fraction in a single-use bioreactor: proof of concept for autologous applications.
    Gadelorge M; Bourdens M; Espagnolle N; Bardiaux C; Murrell J; Savary L; Ribaud S; Chaput B; Sensebé L
    J Tissue Eng Regen Med; 2018 Jan; 12(1):129-141. PubMed ID: 27943660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of large-scale manufacturing of adipose-derived stromal cells for clinical applications using bioreactors and human platelet lysate.
    Haack-Sørensen M; Juhl M; Follin B; Harary Søndergaard R; Kirchhoff M; Kastrup J; Ekblond A
    Scand J Clin Lab Invest; 2018 Jul; 78(4):293-300. PubMed ID: 29661028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Good manufacturing practice-compliant expansion of marrow-derived stem and progenitor cells for cell therapy.
    Gastens MH; Goltry K; Prohaska W; Tschöpe D; Stratmann B; Lammers D; Kirana S; Götting C; Kleesiek K
    Cell Transplant; 2007; 16(7):685-96. PubMed ID: 18019358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-Scale Automated Hollow-Fiber Bioreactor Expansion of Umbilical Cord-Derived Human Mesenchymal Stromal Cells for Neurological Disorders.
    Vymetalova L; Kucirkova T; Knopfova L; Pospisilova V; Kasko T; Lejdarova H; Makaturova E; Kuglik P; Oralova V; Matalova E; Benes P; Koristek Z; Forostyak S
    Neurochem Res; 2020 Jan; 45(1):204-214. PubMed ID: 31828497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and Validation of a Fully GMP-Compliant Process for Manufacturing Stromal Vascular Fraction: A Cost-Effective Alternative to Automated Methods.
    François P; Giraudo L; Veran J; Bertrand B; Dumoulin C; Aboudou H; Grimaud F; Vogtensperger M; Velier M; Arnaud L; Lyonnet L; Simoncini S; Guillet B; Dignat-George F; Magalon J; Sabatier F
    Cells; 2020 Sep; 9(10):. PubMed ID: 32987708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pilot Study for Isolation of Stromal Vascular Fraction with Collagenase Using an Automated Processing System.
    Zinger G; Gronovich Y; Lotan AM; Sharon-Gabbay R
    Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 39000252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A short-term plastic adherence incubation of the stromal vascular fraction leads to a predictable GMP-compliant cell-product.
    Born S; Dörfel MJ; Hartjen P; Haschemi Yekani SA; Luecke J; Meutsch JK; Westphal JK; Birkelbach M; Köhnke R; Smeets R; Krueger M
    Bioimpacts; 2019; 9(3):161-172. PubMed ID: 31508331
    [No Abstract]   [Full Text] [Related]  

  • 11. GMP-grade microcarrier and automated closed industrial scale cell production platform for culture of MSCs.
    Zhang Y; Na T; Zhang K; Yang Y; Xu H; Wei L; Xu L; Yan X; Liu W; Liu G; Wang B; Meng S; Du Y
    J Tissue Eng Regen Med; 2022 Oct; 16(10):934-944. PubMed ID: 35929499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and cost-benefit analysis of automated bioreactor-expanded mesenchymal stem cells for clinical applications.
    Russell AL; Lefavor RC; Zubair AC
    Transfusion; 2018 Oct; 58(10):2374-2382. PubMed ID: 30203447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a System and Method for Automated Isolation of Stromal Vascular Fraction from Adipose Tissue Lipoaspirate.
    SundarRaj S; Deshmukh A; Priya N; Krishnan VS; Cherat M; Majumdar AS
    Stem Cells Int; 2015; 2015():109353. PubMed ID: 26167182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stromal vascular fraction isolated from lipo-aspirates using an automated processing system: bench and bed analysis.
    Doi K; Tanaka S; Iida H; Eto H; Kato H; Aoi N; Kuno S; Hirohi T; Yoshimura K
    J Tissue Eng Regen Med; 2013 Nov; 7(11):864-70. PubMed ID: 22438241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of Human NK Cell Manufacturing: Fully Automated Separation, Improved Ex Vivo Expansion Using IL-21 with Autologous Feeder Cells, and Generation of Anti-CD123-CAR-Expressing Effector Cells.
    Klöß S; Oberschmidt O; Morgan M; Dahlke J; Arseniev L; Huppert V; Granzin M; Gardlowski T; Matthies N; Soltenborn S; Schambach A; Koehl U
    Hum Gene Ther; 2017 Oct; 28(10):897-913. PubMed ID: 28810809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and validation of a consistent and reproducible manufacture process for the production of clinical-grade bone marrow-derived multipotent mesenchymal stromal cells.
    Codinach M; Blanco M; Ortega I; Lloret M; Reales L; Coca MI; Torrents S; Doral M; Oliver-Vila I; Requena-Montero M; Vives J; Garcia-López J
    Cytotherapy; 2016 Sep; 18(9):1197-208. PubMed ID: 27424149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipoaspirate Storage Time and Temperature: Effects on Stromal Vascular Fraction Quality and Cell Composition.
    Svalgaard JD; Juul S; Vester-Glovinski PV; Haastrup EK; Ballesteros OR; Lynggaard CD; Jensen AK; Fischer-Nielsen A; Herly M; Munthe-Fog L
    Cells Tissues Organs; 2020; 209(1):54-63. PubMed ID: 32580198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translation of a standardized manufacturing protocol for mesenchymal stromal cells: A systematic comparison of validation and manufacturing data.
    Rojewski MT; Lotfi R; Gjerde C; Mustafa K; Veronesi E; Ahmed AB; Wiesneth M; Körper S; Sensebé L; Layrolle P; Hellem S; Schrezenmeier H
    Cytotherapy; 2019 Apr; 21(4):468-482. PubMed ID: 30926359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Point-of-Care Adipose-Derived Stromal Vascular Fraction Cell Isolation and Expanded Polytetrafluoroethylene Graft Sodding.
    Williams SK; Morris ME; Kosnik PE; Lye KD; Gentzkow GD; Ross CB; Dwevidi AJ; Kleinert LB
    Tissue Eng Part C Methods; 2017 Aug; 23(8):497-504. PubMed ID: 28657470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Three Devices for the Isolation of the Stromal Vascular Fraction from Adipose Tissue and for ASC Culture: A Comparative Study.
    Rodriguez J; Pratta AS; Abbassi N; Fabre H; Rodriguez F; Debard C; Adobati J; Boucher F; Mallein-Gerin F; Auxenfans C; Damour O; Mojallal A
    Stem Cells Int; 2017; 2017():9289213. PubMed ID: 28321259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.