These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35356775)

  • 21. A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells.
    Dos Santos F; Campbell A; Fernandes-Platzgummer A; Andrade PZ; Gimble JM; Wen Y; Boucher S; Vemuri MC; da Silva CL; Cabral JM
    Biotechnol Bioeng; 2014 Jun; 111(6):1116-27. PubMed ID: 24420557
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated Good Manufacturing Practice-compliant generation of human monocyte-derived dendritic cells from a complete apheresis product using a hollow-fiber bioreactor system overcomes a major hurdle in the manufacture of dendritic cells for cancer vaccines.
    Uslu U; Erdmann M; Wiesinger M; Schuler G; Schuler-Thurner B
    Cytotherapy; 2019 Nov; 21(11):1166-1178. PubMed ID: 31668486
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-toxic freezing media to retain the stem cell reserves in adipose tissues.
    Shaik S; Wu X; Gimble JM; Devireddy R
    Cryobiology; 2020 Oct; 96():137-144. PubMed ID: 32687840
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production.
    Camilleri ET; Gustafson MP; Dudakovic A; Riester SM; Garces CG; Paradise CR; Takai H; Karperien M; Cool S; Sampen HJ; Larson AN; Qu W; Smith J; Dietz AB; van Wijnen AJ
    Stem Cell Res Ther; 2016 Aug; 7(1):107. PubMed ID: 27515308
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adipose Stem Cell Function Maintained with Age: An Intra-Subject Study of Long-Term Cryopreserved Cells.
    Kokai LE; Traktuev DO; Zhang L; Merfeld-Clauss S; DiBernardo G; Lu H; Marra KG; Donnenberg A; Donnenberg V; Meyer EM; Fodor PB; March KL; Rubin JP
    Aesthet Surg J; 2017 Apr; 37(4):454-463. PubMed ID: 28364523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GMP-compliant isolation and expansion of bone marrow-derived MSCs in the closed, automated device quantum cell expansion system.
    Rojewski MT; Fekete N; Baila S; Nguyen K; Fürst D; Antwiler D; Dausend J; Kreja L; Ignatius A; Sensebé L; Schrezenmeier H
    Cell Transplant; 2013; 22(11):1981-2000. PubMed ID: 23107560
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fully Automated
    Poot AJ; Adamzek KWA; Windhorst AD; Vosjan MJWD; Kropf S; Wester HJ; van Dongen GAMS; Vugts DJ
    J Nucl Med; 2019 May; 60(5):691-695. PubMed ID: 30530830
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel method for processing adipose-derived stromal stem cells using a closed cell washing concentration device with a hollow fiber membrane module.
    Hayashi S; Yagi R; Taniguchi S; Uji M; Urano H; Yoshida S; Sakurai H
    Biomed Microdevices; 2021 Jan; 23(1):3. PubMed ID: 33404966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated Large-Scale Production of Paclitaxel Loaded Mesenchymal Stromal Cells for Cell Therapy Applications.
    Lisini D; Nava S; Frigerio S; Pogliani S; Maronati G; Marcianti A; Coccè V; Bondiolotti G; Cavicchini L; Paino F; Petrella F; Alessandri G; Parati EA; Pessina A
    Pharmaceutics; 2020 Apr; 12(5):. PubMed ID: 32365861
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of clinical grade human platelet lysates for cultivation of mesenchymal stromal cells from bone marrow and adipose tissue.
    Juhl M; Tratwal J; Follin B; Søndergaard RH; Kirchhoff M; Ekblond A; Kastrup J; Haack-Sørensen M
    Scand J Clin Lab Invest; 2016; 76(2):93-104. PubMed ID: 26878874
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hollow-fiber bioreactor production of extracellular vesicles from human bone marrow mesenchymal stromal cells yields nanovesicles that mirrors the immuno-modulatory antigenic signature of the producer cell.
    Gobin J; Muradia G; Mehic J; Westwood C; Couvrette L; Stalker A; Bigelow S; Luebbert CC; Bissonnette FS; Johnston MJW; Sauvé S; Tam RY; Wang L; Rosu-Myles M; Lavoie JR
    Stem Cell Res Ther; 2021 Feb; 12(1):127. PubMed ID: 33579358
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validation of an automated procedure to isolate human adipose tissue-derived cells by using the Sepax® technology.
    Güven S; Karagianni M; Schwalbe M; Schreiner S; Farhadi J; Bula S; Bieback K; Martin I; Scherberich A
    Tissue Eng Part C Methods; 2012 Aug; 18(8):575-82. PubMed ID: 22372873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated enumeration and viability measurement of canine stromal vascular fraction cells using fluorescence-based image cytometry method.
    Chan LL; Cohen DA; Kuksin D; Paradis BD; Qiu J
    J Fluoresc; 2014 Jul; 24(4):983-9. PubMed ID: 24740550
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expansion of the human adipose-derived stromal vascular cell fraction yields a population of smooth muscle-like cells with markedly distinct phenotypic and functional properties relative to mesenchymal stem cells.
    Basu J; Genheimer CW; Guthrie KI; Sangha N; Quinlan SF; Bruce AT; Reavis B; Halberstadt C; Ilagan RM; Ludlow JW
    Tissue Eng Part C Methods; 2011 Aug; 17(8):843-60. PubMed ID: 21595545
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Good manufacturing practice-compliant animal-free expansion of human bone marrow derived mesenchymal stroma cells in a closed hollow-fiber-based bioreactor.
    Nold P; Brendel C; Neubauer A; Bein G; Hackstein H
    Biochem Biophys Res Commun; 2013 Jan; 430(1):325-30. PubMed ID: 23146633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inter-center comparison of good manufacturing practices-compliant stromal vascular fraction and proposal for release acceptance criteria: a review of 364 productions.
    François P; Rusconi G; Arnaud L; Mariotta L; Giraudo L; Minonzio G; Veran J; Bertrand B; Dumoulin C; Grimaud F; Lyonnet L; Casanova D; Giverne C; Cras A; Magalon G; Dignat-George F; Sabatier F; Magalon J; Soldati G
    Stem Cell Res Ther; 2021 Jul; 12(1):373. PubMed ID: 34210363
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative Efficacy of Autologous Stromal Vascular Fraction and Autologous Adipose-Derived Mesenchymal Stem Cells Combined With Hyaluronic Acid for the Treatment of Sheep Osteoarthritis.
    Lv X; He J; Zhang X; Luo X; He N; Sun Z; Xia H; Liu V; Zhang L; Lin X; Lin L; Yin H; Jiang D; Cao W; Wang R; Zhou G; Wang W
    Cell Transplant; 2018 Jul; 27(7):1111-1125. PubMed ID: 29909687
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Needle to needle robot-assisted manufacture of cell therapy products.
    Ochs J; Hanga MP; Shaw G; Duffy N; Kulik M; Tissin N; Reibert D; Biermann F; Moutsatsou P; Ratnayake S; Nienow A; Koenig N; Schmitt R; Rafiq Q; Hewitt CJ; Barry F; Murphy JM
    Bioeng Transl Med; 2022 Sep; 7(3):e10387. PubMed ID: 36176619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wet milling of large quantities of human excision adipose tissue for the isolation of stromal vascular fraction cells.
    Menzi N; Osinga R; Todorov A; Schaefer DJ; Martin I; Scherberich A
    Cytotechnology; 2018 Apr; 70(2):807-817. PubMed ID: 29344745
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of culture media on large-scale expansion and characteristic of adipose tissue-derived mesenchymal stromal cells.
    Czapla J; Matuszczak S; Kulik K; Wiśniewska E; Pilny E; Jarosz-Biej M; Smolarczyk R; Sirek T; Zembala MO; Zembala M; Szala S; Cichoń T
    Stem Cell Res Ther; 2019 Aug; 10(1):235. PubMed ID: 31383013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.