BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 3535679)

  • 1. Effect of fatty acid supplementation on thermotropic behavior of membrane lipids and leucine transport in Saccharomyces cerevisiae.
    Basu J; Kundu M; Chakrabarti P
    Arch Biochem Biophys; 1986 Nov; 250(2):382-9. PubMed ID: 3535679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between fluidity and L-alanine transport in a fatty acid auxotroph of Saccharomyces cerevisiae.
    Mishra P; Prasad R
    Biochem Int; 1989 Nov; 19(5):1019-30. PubMed ID: 2699791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of an unsaturated fatty acid auxotroph of Saccharomyces cerevisiae to modify the lipid composition and function of mitochondrial membranes.
    Tung BS; Unger ER; Levin B; Brasitus TA; Getz GS
    J Lipid Res; 1991 Jun; 32(6):1025-38. PubMed ID: 1940618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of phospholipid fatty acids on the kinetics of high and low affinity sites of cytochrome c oxidase.
    Trivedi A; Fantin DJ; Tustanoff ER
    Biochem Cell Biol; 1986 Nov; 64(11):1195-210. PubMed ID: 3030369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative effects of unsaturated fatty acids in microbial mutants. IV. Lipid composition of Saccharomyces cerevisiae when growth is limited by unsaturated fatty acid supply.
    Holub BJ; Lands WE
    Can J Biochem; 1975 Dec; 53(12):1262-77. PubMed ID: 766924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The modulating influence of vitamin E in biological membrane unsaturated phospholipid metabolism.
    Diplock AT
    Acta Vitaminol Enzymol; 1982; 4(4):303-9. PubMed ID: 7158591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dietary triacylglycerol modulates sodium-dependent D-glucose transport, fluidity and fatty acid composition of rat small intestinal brush-border membrane.
    Brasitus TA; Dudeja PK; Bolt MJ; Sitrin MD; Baum C
    Biochim Biophys Acta; 1989 Feb; 979(2):177-86. PubMed ID: 2923876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effectiveness of various unsaturated fatty acids in supporting growth and respiration in Saccharomyces cerevisiae.
    Walenga RW; Lands WE
    J Biol Chem; 1975 Dec; 250(23):9121-9. PubMed ID: 1104617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata.
    Alexandre H; Rousseaux I; Charpentier C
    FEMS Microbiol Lett; 1994 Nov; 124(1):17-22. PubMed ID: 8001764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of long-chain cis-unsaturated fatty acids and their alcohol analogs on aggregation of bovine platelets and their relation with membrane fluidity change.
    Kitagawa S; Endo J; Kametani F
    Biochim Biophys Acta; 1985 Sep; 818(3):391-7. PubMed ID: 4041445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relation between membrane phospholipid composition, fluidity and function in mitochondria of rat brown adipose tissue. Effect of thermal adaptation and essential fatty acid deficiency.
    Senault C; Yazbeck J; Goubern M; Portet R; Vincent M; Gallay J
    Biochim Biophys Acta; 1990 Apr; 1023(2):283-9. PubMed ID: 2328250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective loss of mitochondrial genome can be caused by certain unsaturated fatty acids.
    Graff G; Sacks RW; Lands WE
    Arch Biochem Biophys; 1983 Jul; 224(1):342-50. PubMed ID: 6347068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipid metabolism in V79-R membranes composed of phospholipid molecular species containing trans-monoenoic fatty acids.
    Urade R; Kito M
    J Biochem; 1984 Sep; 96(3):821-8. PubMed ID: 6094524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. cis/trans isomerization of unsaturated fatty acids as possible control mechanism of membrane fluidity in Pseudomonas putida P8.
    Loffeld B; Keweloh H
    Lipids; 1996 Aug; 31(8):811-5. PubMed ID: 8869883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of fatty acid unsaturation and physical properties of microsomal membrane phospholipids on UDP-glucuronyltransferase activity.
    Castuma CE; Brenner RR
    Biochem J; 1989 Mar; 258(3):723-31. PubMed ID: 2499306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of ethanol and specific growth rate on the lipid content and composition of Saccharomyces cerevisiae grown anaerobically in a chemostat.
    Arneborg N; Høy CE; Jørgensen OB
    Yeast; 1995 Aug; 11(10):953-9. PubMed ID: 8533470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biogenesis of mitochondria. 3. The lipid composition of aerobically and anaerobically grown Saccharomyces cerevisiae as related to the membrane systems of the cells.
    Jollow D; Kellerman GM; Linnane AW
    J Cell Biol; 1968 May; 37(2):221-30. PubMed ID: 4297785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationships between growth temperature, fatty acid composition and the physical state and fluidity of membrane lipids in Yersinia enterocolitica.
    Abbas CA; Card GL
    Biochim Biophys Acta; 1980 Nov; 602(3):469-76. PubMed ID: 7437420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in fatty acid distribution and thermotropic properties of phospholipids following phosphatidylcholine depletion in a choline-requiring mutant of Neurospora crassa.
    Martin CE; Johnston AM
    Biochim Biophys Acta; 1983 Apr; 730(1):10-6. PubMed ID: 6219706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biogenesis of mitochondria. The effects of altered membrane lipid composition on cation transport by mitochondria of Saccharomyces cerevisiae.
    Haslam JM; Spithill TW; Linnane AW; Chappell JB
    Biochem J; 1973 Aug; 134(4):949-57. PubMed ID: 4587074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.