BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 35356963)

  • 1. Quinone binding sites of cyt bc complexes analysed by X-ray crystallography and cryogenic electron microscopy.
    Kao WC; Hunte C
    Biochem Soc Trans; 2022 Apr; 50(2):877-893. PubMed ID: 35356963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cytochrome b Zn binding amino acid residue histidine 291 is essential for ubihydroquinone oxidation at the Q
    Francia F; Malferrari M; Lanciano P; Steimle S; Daldal F; Venturoli G
    Biochim Biophys Acta; 2016 Nov; 1857(11):1796-1806. PubMed ID: 27550309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding dynamics at the quinone reduction (Qi) site influence the equilibrium interactions of the iron sulfur protein and hydroquinone oxidation (Qo) site of the cytochrome bc1 complex.
    Cooley JW; Ohnishi T; Daldal F
    Biochemistry; 2005 Aug; 44(31):10520-32. PubMed ID: 16060661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cytochrome b lysine 329 residue is critical for ubihydroquinone oxidation and proton release at the Q
    Francia F; Khalfaoui-Hassani B; Lanciano P; Musiani F; Noodleman L; Venturoli G; Daldal F
    Biochim Biophys Acta Bioenerg; 2019 Feb; 1860(2):167-179. PubMed ID: 30550726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The inhibitor DBMIB provides insight into the functional architecture of the Qo site in the cytochrome b6f complex.
    Roberts AG; Bowman MK; Kramer DM
    Biochemistry; 2004 Jun; 43(24):7707-16. PubMed ID: 15196013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Q cycle of cytochrome bc complexes: a structure perspective.
    Cramer WA; Hasan SS; Yamashita E
    Biochim Biophys Acta; 2011 Jul; 1807(7):788-802. PubMed ID: 21352799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for the quinone reduction in the bc1 complex: a comparative analysis of crystal structures of mitochondrial cytochrome bc1 with bound substrate and inhibitors at the Qi site.
    Gao X; Wen X; Esser L; Quinn B; Yu L; Yu CA; Xia D
    Biochemistry; 2003 Aug; 42(30):9067-80. PubMed ID: 12885240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytochrome bc1 complex [2Fe-2S] cluster and its interaction with ubiquinone and ubihydroquinone at the Qo site: a double-occupancy Qo site model.
    Ding H; Robertson DE; Daldal F; Dutton PL
    Biochemistry; 1992 Mar; 31(12):3144-58. PubMed ID: 1313287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and computational analysis of the quinone-binding site of complex II (succinate-ubiquinone oxidoreductase): a mechanism of electron transfer and proton conduction during ubiquinone reduction.
    Horsefield R; Yankovskaya V; Sexton G; Whittingham W; Shiomi K; Omura S; Byrne B; Cecchini G; Iwata S
    J Biol Chem; 2006 Mar; 281(11):7309-16. PubMed ID: 16407191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Architecture of the Qo site of the cytochrome bc1 complex probed by superoxide production.
    Muller FL; Roberts AG; Bowman MK; Kramer DM
    Biochemistry; 2003 Jun; 42(21):6493-9. PubMed ID: 12767232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Requirement of histidine 217 for ubiquinone reductase activity (Qi site) in the cytochrome bc1 complex.
    Gray KA; Dutton PL; Daldal F
    Biochemistry; 1994 Jan; 33(3):723-33. PubMed ID: 8292600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying involvement of Lys251/Asp252 pair in electron transfer and associated proton transfer at the quinone reduction site of Rhodobacter capsulatus cytochrome bc1.
    Kuleta P; Sarewicz M; Postila P; Róg T; Osyczka A
    Biochim Biophys Acta; 2016 Oct; 1857(10):1661-8. PubMed ID: 27421232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The molecular evolution of the Qo motif.
    Kao WC; Hunte C
    Genome Biol Evol; 2014 Jul; 6(7):1894-910. PubMed ID: 25115012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron sweep across four b-hemes of cytochrome bc
    Pintscher S; Pietras R; Sarewicz M; Osyczka A
    Biochim Biophys Acta Bioenerg; 2018 Jun; 1859(6):459-469. PubMed ID: 29596789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is cytochrome b glutamic acid 272 a quinol binding residue in the bc1 complex of Saccharomyces cerevisiae?
    Seddiki N; Meunier B; Lemesle-Meunier D; Brasseur G
    Biochemistry; 2008 Feb; 47(8):2357-68. PubMed ID: 18215069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric and redox-specific binding of quinone and quinol at center N of the dimeric yeast cytochrome bc1 complex. Consequences for semiquinone stabilization.
    Covian R; Zwicker K; Rotsaert FA; Trumpower BL
    J Biol Chem; 2007 Aug; 282(33):24198-208. PubMed ID: 17584742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution cryo-EM structures of plant cytochrome b
    Sarewicz M; Szwalec M; Pintscher S; Indyka P; Rawski M; Pietras R; Mielecki B; Koziej Ł; Jaciuk M; Glatt S; Osyczka A
    Sci Adv; 2023 Jan; 9(2):eadd9688. PubMed ID: 36638176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Key role of water in proton transfer at the Qo-site of the cytochrome bc1 complex predicted by atomistic molecular dynamics simulations.
    Postila PA; Kaszuba K; Sarewicz M; Osyczka A; Vattulainen I; Róg T
    Biochim Biophys Acta; 2013 Jun; 1827(6):761-8. PubMed ID: 23428399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the PEWY glutamate in hydroquinone-quinone oxidation-reduction catalysis in the Qo Site of cytochrome bc1.
    Osyczka A; Zhang H; Mathé C; Rich PR; Moser CC; Dutton PL
    Biochemistry; 2006 Sep; 45(35):10492-503. PubMed ID: 16939201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ubiquinone pair in the Qo site central to the primary energy conversion reactions of cytochrome bc1 complex.
    Ding H; Moser CC; Robertson DE; Tokito MK; Daldal F; Dutton PL
    Biochemistry; 1995 Dec; 34(49):15979-96. PubMed ID: 8519754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.