BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35357008)

  • 21. Disentangling climate change effects on species interactions: effects of temperature, phenological shifts, and body size.
    Rudolf VH; Singh M
    Oecologia; 2013 Nov; 173(3):1043-52. PubMed ID: 23670600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contacts with large, active individuals intensify the predation risk of small conspecifics.
    Yamaguchi A; Takatsu K; Kishida O
    Ecology; 2016 Nov; 97(11):3206-3218. PubMed ID: 27870048
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predation risk suppresses the positive feedback between size structure and cannibalism.
    Kishida O; Trussell GC; Ohno A; Kuwano S; Ikawa T; Nishimura K
    J Anim Ecol; 2011 Nov; 80(6):1278-87. PubMed ID: 21668893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent natural variability in global warming weakened phenological mismatch and selection on seasonal timing in great tits (
    Visser ME; Lindner M; Gienapp P; Long MC; Jenouvrier S
    Proc Biol Sci; 2021 Nov; 288(1963):20211337. PubMed ID: 34814747
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increasing availability of palatable prey induces predator-dependence and increases predation on unpalatable prey.
    Hossie TJ; Chan K; Murray DL
    Sci Rep; 2021 Mar; 11(1):6763. PubMed ID: 33762642
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of size-specific indirect interactions in predator-prey systems.
    Rudolf VH
    Ecology; 2006 Feb; 87(2):362-71. PubMed ID: 16637362
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shifts in phenological mean and synchrony interact to shape competitive outcomes.
    Carter SK; Rudolf VHW
    Ecology; 2019 Nov; 100(11):e02826. PubMed ID: 31325374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inducible defenses in prey intensify predator cannibalism.
    Kishida O; Trussell GC; Nishimura K; Ohgushi T
    Ecology; 2009 Nov; 90(11):3150-8. PubMed ID: 19967870
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Local genetic adaptation generates latitude-specific effects of warming on predator-prey interactions.
    De Block M; Pauwels K; Van Den Broeck M; De Meester L; Stoks R
    Glob Chang Biol; 2013 Mar; 19(3):689-96. PubMed ID: 23504827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Seasonal shifts in predator body size diversity and trophic interactions in size-structured predator-prey systems.
    Rudolf VH
    J Anim Ecol; 2012 May; 81(3):524-32. PubMed ID: 22191419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phenological shifts and mismatch with marine productivity vary among Pacific salmon species and populations.
    Wilson SM; Moore JW; Ward EJ; Kinsel CW; Anderson JH; Buehrens TW; Carr-Harris CN; Cochran PC; Davies TD; Downen MR; Godbout L; Lisi PJ; Litz MNC; Patterson DA; Selbie DT; Sloat MR; Suring EJ; Tattam IA; Wyatt GJ
    Nat Ecol Evol; 2023 Jun; 7(6):852-861. PubMed ID: 37127767
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The growth-predation risk trade-off under a growing gape-limited predation threat.
    Urban MC
    Ecology; 2007 Oct; 88(10):2587-97. PubMed ID: 18027761
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Warming can destabilize predator-prey interactions by shifting the functional response from Type III to Type II.
    Daugaard U; Petchey OL; Pennekamp F
    J Anim Ecol; 2019 Oct; 88(10):1575-1586. PubMed ID: 31257583
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermal plasticity and evolution shape predator-prey interactions differently in clear and turbid water bodies.
    Wang YJ; Tüzün N; Sentis A; Stoks R
    J Anim Ecol; 2022 Apr; 91(4):883-894. PubMed ID: 35220603
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatial match-mismatch between predators and prey under climate change.
    Carroll G; Abrahms B; Brodie S; Cimino MA
    Nat Ecol Evol; 2024 Jun; ():. PubMed ID: 38914712
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of seasonally variable dragonfly predation on butterfly assemblages.
    Tiitsaar A; Kaasik A; Teder T
    Ecology; 2013 Jan; 94(1):200-7. PubMed ID: 23600254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predator personality structures prey communities and trophic cascades.
    Start D; Gilbert B
    Ecol Lett; 2017 Mar; 20(3):366-374. PubMed ID: 28120366
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The relevance of food peak architecture in trophic interactions.
    Vatka E; Orell M; Rytkönen S
    Glob Chang Biol; 2016 Apr; 22(4):1585-94. PubMed ID: 26527602
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investment into defensive traits by anuran prey (Lithobates pipiens) is mediated by the starvation-predation risk trade-off.
    Bennett AM; Pereira D; Murray DL
    PLoS One; 2013; 8(12):e82344. PubMed ID: 24349259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trophic cascade driven by behavioral fine-tuning as naïve prey rapidly adjust to a novel predator.
    Jolly CJ; Smart AS; Moreen J; Webb JK; Gillespie GR; Phillips BL
    Ecology; 2021 Jul; 102(7):e03363. PubMed ID: 33830501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.