These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 35357048)

  • 21. Event-related brain potentials reveal multiple stages in the perceptual organization of sound.
    Winkler I; Takegata R; Sussman E
    Brain Res Cogn Brain Res; 2005 Sep; 25(1):291-9. PubMed ID: 16005616
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Native language advantage in electrical brain responses to speech sound changes in passive and active listening condition.
    Yang T; Kurkela JLO; Chen K; Liu Y; Shu H; Cong F; Hämäläinen JA; Astikainen P
    Neuropsychologia; 2024 Aug; 201():108936. PubMed ID: 38851314
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Semantic prediction-errors are context-dependent: An ERP study.
    Jack BN; Le Pelley ME; Griffiths O; Luque D; Whitford TJ
    Brain Res; 2019 Mar; 1706():86-92. PubMed ID: 30391305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural mechanisms of involuntary attention to acoustic novelty and change.
    Escera C; Alho K; Winkler I; Näätänen R
    J Cogn Neurosci; 1998 Sep; 10(5):590-604. PubMed ID: 9802992
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of acoustic gradient noise from functional magnetic resonance imaging on auditory processing as reflected by event-related brain potentials.
    Novitski N; Alho K; Korzyukov O; Carlson S; Martinkauppi S; Escera C; Rinne T; Aronen HJ; Näätänen R
    Neuroimage; 2001 Jul; 14(1 Pt 1):244-51. PubMed ID: 11525334
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Explaining the high voice superiority effect in polyphonic music: evidence from cortical evoked potentials and peripheral auditory models.
    Trainor LJ; Marie C; Bruce IC; Bidelman GM
    Hear Res; 2014 Feb; 308():60-70. PubMed ID: 23916754
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of the cardiac cycle on auditory processing: A preregistered study on mismatch negativity.
    Li L; Ishida K; Mizuhara K; Barry RJ; Nittono H
    Psychophysiology; 2024 May; 61(5):e14506. PubMed ID: 38149745
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temporal window of integration revealed by MMN to sound omission.
    Yabe H; Tervaniemi M; Reinikainen K; Näätänen R
    Neuroreport; 1997 May; 8(8):1971-4. PubMed ID: 9223087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conditional deviant repetition in the oddball paradigm modulates processing at the level of P3a but not MMN.
    Coy N; Bendixen A; Grimm S; Roeber U; Schröger E
    Psychophysiology; 2024 Jun; 61(6):e14545. PubMed ID: 38366704
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comprehensive auditory discrimination profiles recorded with a fast parametric musical multi-feature mismatch negativity paradigm.
    Vuust P; Liikala L; Näätänen R; Brattico P; Brattico E
    Clin Neurophysiol; 2016 Apr; 127(4):2065-77. PubMed ID: 26818879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hierarchical timescales of statistical learning revealed by mismatch negativity to auditory pattern deviations.
    Fitzgerald K; Todd J
    Neuropsychologia; 2018 Nov; 120():25-34. PubMed ID: 30268879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. When sound and picture do not fit: Mismatch negativity and sensory interaction.
    Ullsperger P; Erdmann U; Freude G; Dehoff W
    Int J Psychophysiol; 2006 Jan; 59(1):3-7. PubMed ID: 16290115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Noise occlusion in discrete tone sequences as a tool towards auditory predictive processing?
    Bendixen A; Duwe S; Reiche M
    Brain Res; 2015 Nov; 1626():97-107. PubMed ID: 26187755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Grouping of sequential sounds--an event-related potential study comparing musicians and nonmusicians.
    van Zuijen TL; Sussman E; Winkler I; Näätänen R; Tervaniemi M
    J Cogn Neurosci; 2004 Mar; 16(2):331-8. PubMed ID: 15068601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Music of Silence: Part II: Music Listening Induces Imagery Responses.
    Di Liberto GM; Marion G; Shamma SA
    J Neurosci; 2021 Sep; 41(35):7449-7460. PubMed ID: 34341154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Top-down modulation of auditory processing: effects of sound context, musical expertise and attentional focus.
    Tervaniemi M; Kruck S; De Baene W; Schröger E; Alter K; Friederici AD
    Eur J Neurosci; 2009 Oct; 30(8):1636-42. PubMed ID: 19821835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transitional Probabilities Are Prioritized over Stimulus/Pattern Probabilities in Auditory Deviance Detection: Memory Basis for Predictive Sound Processing.
    Mittag M; Takegata R; Winkler I
    J Neurosci; 2016 Sep; 36(37):9572-9. PubMed ID: 27629709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Can intensity modulation of the auditory response explain intensity-decrement mismatch negativity?
    O'Reilly JA
    Neurosci Lett; 2021 Nov; 764():136199. PubMed ID: 34461160
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The processing of frequency deviations within sounds: evidence for the predictive nature of the Mismatch Negativity (MMN) system.
    Grimm S; Schröger E
    Restor Neurol Neurosci; 2007; 25(3-4):241-9. PubMed ID: 17943002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Auditory event-related potentials (ERP) reflect temporal changes in speech stimuli.
    Pihko E; Leppäsaari T; Leppänen P; Richardson U; Lyytinen H
    Neuroreport; 1997 Mar; 8(4):911-4. PubMed ID: 9141063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.