BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 35358235)

  • 1. DeBoNet: A deep bone suppression model ensemble to improve disease detection in chest radiographs.
    Rajaraman S; Cohen G; Spear L; Folio L; Antani S
    PLoS One; 2022; 17(3):e0265691. PubMed ID: 35358235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation of bones from soft tissue in chest radiographs: Anatomy-specific orientation-frequency-specific deep neural network convolution.
    Zarshenas A; Liu J; Forti P; Suzuki K
    Med Phys; 2019 May; 46(5):2232-2242. PubMed ID: 30848498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chest X-ray Bone Suppression for Improving Classification of Tuberculosis-Consistent Findings.
    Rajaraman S; Zamzmi G; Folio L; Alderson P; Antani S
    Diagnostics (Basel); 2021 May; 11(5):. PubMed ID: 34067034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic delineation of ribs and clavicles in chest radiographs using fully convolutional DenseNets.
    Liu Y; Zhang X; Cai G; Chen Y; Yun Z; Feng Q; Yang W
    Comput Methods Programs Biomed; 2019 Oct; 180():105014. PubMed ID: 31430596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of bones from chest radiographs by means of anatomically specific multiple massive-training ANNs combined with total variation minimization smoothing.
    Sheng Chen ; Suzuki K
    IEEE Trans Med Imaging; 2014 Feb; 33(2):246-57. PubMed ID: 24132005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MDU-Net: A Convolutional Network for Clavicle and Rib Segmentation from a Chest Radiograph.
    Wang W; Feng H; Bu Q; Cui L; Xie Y; Zhang A; Feng J; Zhu Z; Chen Z
    J Healthc Eng; 2020; 2020():2785464. PubMed ID: 32724504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting Tuberculosis-Consistent Findings in Lateral Chest X-Rays Using an Ensemble of CNNs and Vision Transformers.
    Rajaraman S; Zamzmi G; Folio LR; Antani S
    Front Genet; 2022; 13():864724. PubMed ID: 35281798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN).
    Suzuki K; Abe H; MacMahon H; Doi K
    IEEE Trans Med Imaging; 2006 Apr; 25(4):406-16. PubMed ID: 16608057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cascade of multi-scale convolutional neural networks for bone suppression of chest radiographs in gradient domain.
    Yang W; Chen Y; Liu Y; Zhong L; Qin G; Lu Z; Feng Q; Chen W
    Med Image Anal; 2017 Jan; 35():421-433. PubMed ID: 27589577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of chest radiographs obtained in the intensive care unit through bone suppression and consistent processing.
    Chen S; Zhong S; Yao L; Shang Y; Suzuki K
    Phys Med Biol; 2016 Mar; 61(6):2283-301. PubMed ID: 26930386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of translucent elongated structures: applications in chest radiography.
    Hogeweg L; Sanchez CI; van Ginneken B
    IEEE Trans Med Imaging; 2013 Nov; 32(11):2099-113. PubMed ID: 23880041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone suppression of lateral chest x-rays with imperfect and limited dual-energy subtraction images.
    Liu Y; Zeng F; Ma M; Zheng B; Yun Z; Qin G; Yang W; Feng Q
    Comput Med Imaging Graph; 2023 Apr; 105():102186. PubMed ID: 36731328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalizable Inter-Institutional Classification of Abnormal Chest Radiographs Using Efficient Convolutional Neural Networks.
    Pan I; Agarwal S; Merck D
    J Digit Imaging; 2019 Oct; 32(5):888-896. PubMed ID: 30838482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and validation of bone-suppressed deep learning classification of COVID-19 presentation in chest radiographs.
    Lam NFD; Sun H; Song L; Yang D; Zhi S; Ren G; Chou PH; Wan SBN; Wong MFE; Chan KK; Tsang HCH; Kong FS; Wáng YXJ; Qin J; Chan LWC; Ying M; Cai J
    Quant Imaging Med Surg; 2022 Jul; 12(7):3917-3931. PubMed ID: 35782269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone suppression on pediatric chest radiographs via a deep learning-based cascade model.
    Cho K; Seo J; Kyung S; Kim M; Hong GS; Kim N
    Comput Methods Programs Biomed; 2022 Mar; 215():106627. PubMed ID: 35032722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FLANNEL (Focal Loss bAsed Neural Network EnsembLe) for COVID-19 detection.
    Qiao Z; Bae A; Glass LM; Xiao C; Sun J
    J Am Med Inform Assoc; 2021 Mar; 28(3):444-452. PubMed ID: 33125051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning-based bone suppression in chest radiographs using CT-derived features: a feasibility study.
    Ren G; Xiao H; Lam SK; Yang D; Li T; Teng X; Qin J; Cai J
    Quant Imaging Med Surg; 2021 Dec; 11(12):4807-4819. PubMed ID: 34888191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs.
    Novikov AA; Lenis D; Major D; Hladuvka J; Wimmer M; Buhler K
    IEEE Trans Med Imaging; 2018 Aug; 37(8):1865-1876. PubMed ID: 29994439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing clinical applicability of COVID-19 detection in chest radiography with deep learning.
    Pedrosa J; Aresta G; Ferreira C; Carvalho C; Silva J; Sousa P; Ribeiro L; Mendonça AM; Campilho A
    Sci Rep; 2022 Apr; 12(1):6596. PubMed ID: 35449199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Value of bone suppression software in chest radiographs for improving image quality and reducing radiation dose.
    Hong GS; Do KH; Son AY; Jo KW; Kim KP; Yun J; Lee CW
    Eur Radiol; 2021 Jul; 31(7):5160-5171. PubMed ID: 33439320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.