These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 35358341)
1. Conductive Metal-Organic Frameworks for Supercapacitors. Niu L; Wu T; Chen M; Yang L; Yang J; Wang Z; Kornyshev AA; Jiang H; Bi S; Feng G Adv Mater; 2022 Dec; 34(52):e2200999. PubMed ID: 35358341 [TBL] [Abstract][Full Text] [Related]
2. Recent Progress of Advanced Conductive Metal-Organic Frameworks: Precise Synthesis, Electrochemical Energy Storage Applications, and Future Challenges. Xu G; Zhu C; Gao G Small; 2022 Nov; 18(44):e2203140. PubMed ID: 36050887 [TBL] [Abstract][Full Text] [Related]
3. Approaches to Enhancing Electrical Conductivity of Pristine Metal-Organic Frameworks for Supercapacitor Applications. Wang T; Lei J; Wang Y; Pang L; Pan F; Chen KJ; Wang H Small; 2022 Aug; 18(32):e2203307. PubMed ID: 35843875 [TBL] [Abstract][Full Text] [Related]
4. 2D Conductive Metal-Organic Frameworks: An Emerging Platform for Electrochemical Energy Storage. Liu J; Song X; Zhang T; Liu S; Wen H; Chen L Angew Chem Int Ed Engl; 2021 Mar; 60(11):5612-5624. PubMed ID: 32452126 [TBL] [Abstract][Full Text] [Related]
5. Negative electrodes for supercapacitors with good performance using conductive bismuth-catecholate metal-organic frameworks. Chen S; Zhang H; Li X; Liu Y; Zhang M; Gao X; Chang X; Pu X; He C Dalton Trans; 2023 Apr; 52(15):4826-4834. PubMed ID: 36939173 [TBL] [Abstract][Full Text] [Related]
6. Organic Solvent Boosts Charge Storage and Charging Dynamics of Conductive MOF Supercapacitors. Chen M; Wu T; Niu L; Ye T; Dai W; Zeng L; Kornyshev AA; Wang Z; Liu Z; Feng G Adv Mater; 2024 Jul; 36(30):e2403202. PubMed ID: 38751336 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of Conductive MOFs and Their Electrochemical Application. Wu C; Geng P; Zhang G; Li X; Pang H Small; 2024 Apr; 20(17):e2308264. PubMed ID: 38059787 [TBL] [Abstract][Full Text] [Related]
8. Metal-Organic Framework Derived Bimetallic Materials for Electrochemical Energy Storage. Sanati S; Abazari R; Albero J; Morsali A; García H; Liang Z; Zou R Angew Chem Int Ed Engl; 2021 May; 60(20):11048-11067. PubMed ID: 32910529 [TBL] [Abstract][Full Text] [Related]
9. Cellulose Nanofiber @ Conductive Metal-Organic Frameworks for High-Performance Flexible Supercapacitors. Zhou S; Kong X; Zheng B; Huo F; Strømme M; Xu C ACS Nano; 2019 Aug; 13(8):9578-9586. PubMed ID: 31294960 [TBL] [Abstract][Full Text] [Related]
10. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Bi S; Banda H; Chen M; Niu L; Chen M; Wu T; Wang J; Wang R; Feng J; Chen T; Dincă M; Kornyshev AA; Feng G Nat Mater; 2020 May; 19(5):552-558. PubMed ID: 32015536 [TBL] [Abstract][Full Text] [Related]
11. The Utilization of Metal-Organic Frameworks and Their Derivatives Composite in Supercapacitor Electrodes. Liu Q; Li R; Li J; Zheng B; Song S; Chen L; Li T; Ma Y Chemistry; 2024 May; 30(30):e202400157. PubMed ID: 38520385 [TBL] [Abstract][Full Text] [Related]
12. Metal-Organic Framework Materials for Electrochemical Supercapacitors. Cao Z; Momen R; Tao S; Xiong D; Song Z; Xiao X; Deng W; Hou H; Yasar S; Altin S; Bulut F; Zou G; Ji X Nanomicro Lett; 2022 Sep; 14(1):181. PubMed ID: 36050520 [TBL] [Abstract][Full Text] [Related]
13. Three-Dimensional Networked Metal-Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors. Xu X; Tang J; Qian H; Hou S; Bando Y; Hossain MSA; Pan L; Yamauchi Y ACS Appl Mater Interfaces; 2017 Nov; 9(44):38737-38744. PubMed ID: 29082737 [TBL] [Abstract][Full Text] [Related]
14. Recent progress on pristine two-dimensional metal-organic frameworks as active components in supercapacitors. Guo Y; Wang K; Hong Y; Wu H; Zhang Q Dalton Trans; 2021 Sep; 50(33):11331-11346. PubMed ID: 34313288 [TBL] [Abstract][Full Text] [Related]
15. Pristine Metal-Organic Frameworks and their Composites for Energy Storage and Conversion. Liang Z; Qu C; Guo W; Zou R; Xu Q Adv Mater; 2018 Sep; 30(37):e1702891. PubMed ID: 29164712 [TBL] [Abstract][Full Text] [Related]
16. Metal-organic frameworks (MOFs) for energy production and gaseous fuel and electrochemical energy storage applications. Shanmugam M; Agamendran N; Sekar K; Natarajan TS Phys Chem Chem Phys; 2023 Nov; 25(44):30116-30144. PubMed ID: 37909363 [TBL] [Abstract][Full Text] [Related]
17. Conductive Microporous Covalent Triazine-Based Framework for High-Performance Electrochemical Capacitive Energy Storage. Li Y; Zheng S; Liu X; Li P; Sun L; Yang R; Wang S; Wu ZS; Bao X; Deng WQ Angew Chem Int Ed Engl; 2018 Jul; 57(27):7992-7996. PubMed ID: 29135063 [TBL] [Abstract][Full Text] [Related]
18. MOF-Derived Metal Oxide Composites for Advanced Electrochemical Energy Storage. Li Y; Xu Y; Yang W; Shen W; Xue H; Pang H Small; 2018 Jun; 14(25):e1704435. PubMed ID: 29750438 [TBL] [Abstract][Full Text] [Related]
19. The Application of Metal-Organic Frameworks and Their Derivatives for Supercapacitors. Huang S; Shi XR; Sun C; Duan Z; Ma P; Xu S Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33207732 [TBL] [Abstract][Full Text] [Related]
20. Porous Carbon-Based Supercapacitors Directly Derived from Metal-Organic Frameworks. Kim HC; Huh S Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32972017 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]