BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35358650)

  • 1. Accurately predicting nitrosylated tyrosine sites using probabilistic sequence information.
    Rahman A; Ahmed S; Al Mehedi Hasan M; Ahmad S; Dehzangi I
    Gene; 2022 Jun; 826():146445. PubMed ID: 35358650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. predCar-site: Carbonylation sites prediction in proteins using support vector machine with resolving data imbalanced issue.
    Hasan MA; Li J; Ahmad S; Molla MK
    Anal Biochem; 2017 May; 525():107-113. PubMed ID: 28286168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. predPhogly-Site: Predicting phosphoglycerylation sites by incorporating probabilistic sequence-coupling information into PseAAC and addressing data imbalance.
    Ahmed S; Rahman A; Hasan MAM; Islam MKB; Rahman J; Ahmad S
    PLoS One; 2021; 16(4):e0249396. PubMed ID: 33793659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PredNTS: Improved and Robust Prediction of Nitrotyrosine Sites by Integrating Multiple Sequence Features.
    Nilamyani AN; Auliah FN; Moni MA; Shoombuatong W; Hasan MM; Kurata H
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33800121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NTyroSite: Computational Identification of Protein Nitrotyrosine Sites Using Sequence Evolutionary Features.
    Hasan MM; Khatun MS; Mollah MNH; Yong C; Dianjing G
    Molecules; 2018 Jul; 23(7):. PubMed ID: 29987232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepPPSite: A deep learning-based model for analysis and prediction of phosphorylation sites using efficient sequence information.
    Ahmed S; Kabir M; Arif M; Khan ZU; Yu DJ
    Anal Biochem; 2021 Jan; 612():113955. PubMed ID: 32949607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurately Predicting Glutarylation Sites Using Sequential Bi-Peptide-Based Evolutionary Features.
    Arafat ME; Ahmad MW; Shovan SM; Dehzangi A; Dipta SR; Hasan MAM; Taherzadeh G; Shatabda S; Sharma A
    Genes (Basel); 2020 Aug; 11(9):. PubMed ID: 32878321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Identification of Protein Pupylation Sites by Using Profile-Based Composition of k-Spaced Amino Acid Pairs.
    Hasan MM; Zhou Y; Lu X; Li J; Song J; Zhang Z
    PLoS One; 2015; 10(6):e0129635. PubMed ID: 26080082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pNitro-Tyr-PseAAC: Predict Nitrotyrosine Sites in Proteins by Incorporating Five Features into Chou's General PseAAC.
    Ghauri AW; Khan YD; Rasool N; Khan SA; Chou KC
    Curr Pharm Des; 2018; 24(34):4034-4043. PubMed ID: 30479209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DPP-PseAAC: A DNA-binding protein prediction model using Chou's general PseAAC.
    Rahman MS; Shatabda S; Saha S; Kaykobad M; Rahman MS
    J Theor Biol; 2018 Sep; 452():22-34. PubMed ID: 29753757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Prediction and Analysis for Tyrosine Post-Translational Modifications via Elastic Net.
    Cao M; Chen G; Wang L; Wen P; Shi S
    J Chem Inf Model; 2018 Jun; 58(6):1272-1281. PubMed ID: 29775287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iLM-2L: A two-level predictor for identifying protein lysine methylation sites and their methylation degrees by incorporating K-gap amino acid pairs into Chou׳s general PseAAC.
    Ju Z; Cao JZ; Gu H
    J Theor Biol; 2015 Nov; 385():50-7. PubMed ID: 26254214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PLP_FS: prediction of lysine phosphoglycerylation sites in protein using support vector machine and fusion of multiple F_Score feature selection.
    Sohrawordi M; Hossain MA; Hasan MAM
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35929355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurately predicting microbial phosphorylation sites using evolutionary and structural features.
    Ahmed F; Dehzangi I; Hasan MM; Shatabda S
    Gene; 2023 Jan; 851():146993. PubMed ID: 36272653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Sep; 76():356-363. PubMed ID: 28763688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SumSec: Accurate Prediction of Sumoylation Sites Using Predicted Secondary Structure.
    Dehzangi A; López Y; Taherzadeh G; Sharma A; Tsunoda T
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30544729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutli-Features Prediction of Protein Translational Modification Sites.
    Bao W; Yuan CA; Zhang Y; Han K; Nandi AK; Honig B; Huang DS
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(5):1453-1460. PubMed ID: 28961121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bigram-PGK: phosphoglycerylation prediction using the technique of bigram probabilities of position specific scoring matrix.
    Chandra A; Sharma A; Dehzangi A; Shigemizu D; Tsunoda T
    BMC Mol Cell Biol; 2019 Dec; 20(Suppl 2):57. PubMed ID: 31856704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Systematic Review on Posttranslational Modification in Proteins: Feature Construction, Algorithm and Webserver.
    Xu Y; Yang Y; Wang Z; Li C; Shao Y
    Protein Pept Lett; 2018; 25(9):807-814. PubMed ID: 30255739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.
    Zhao X; Ning Q; Chai H; Ma Z
    J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.