These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35358752)

  • 41. Active learning for accuracy enhancement of semantic segmentation with CNN-corrected label curations: Evaluation on kidney segmentation in abdominal CT.
    Kim T; Lee KH; Ham S; Park B; Lee S; Hong D; Kim GB; Kyung YS; Kim CS; Kim N
    Sci Rep; 2020 Jan; 10(1):366. PubMed ID: 31941938
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer.
    Lin YC; Lin CH; Lu HY; Chiang HJ; Wang HK; Huang YT; Ng SH; Hong JH; Yen TC; Lai CH; Lin G
    Eur Radiol; 2020 Mar; 30(3):1297-1305. PubMed ID: 31712961
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of a Deep Learning Algorithm for Automated Spleen Segmentation in Patients with Conditions Directly or Indirectly Affecting the Spleen.
    Meddeb A; Kossen T; Bressem KK; Hamm B; Nagel SN
    Tomography; 2021 Dec; 7(4):950-960. PubMed ID: 34941650
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simple low-cost approaches to semantic segmentation in radiation therapy planning for prostate cancer using deep learning with non-contrast planning CT images.
    Nemoto T; Futakami N; Yagi M; Kunieda E; Akiba T; Takeda A; Shigematsu N
    Phys Med; 2020 Oct; 78():93-100. PubMed ID: 32950833
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tripod index: a new radiographic parameter assessing foot alignment.
    Arunakul M; Amendola A; Gao Y; Goetz JE; Femino JE; Phisitkul P
    Foot Ankle Int; 2013 Oct; 34(10):1411-20. PubMed ID: 23657663
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tibialis posterior transfer for foot drop due to central causes: Long-term hindfoot alignment.
    Sturbois-Nachef N; Allart E; Grauwin MY; Rousseaux M; Thévenon A; Fontaine C
    Orthop Traumatol Surg Res; 2019 Feb; 105(1):153-158. PubMed ID: 30591416
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Automatic segmentation and applicator reconstruction for CT-based brachytherapy of cervical cancer using 3D convolutional neural networks.
    Zhang D; Yang Z; Jiang S; Zhou Z; Meng M; Wang W
    J Appl Clin Med Phys; 2020 Oct; 21(10):158-169. PubMed ID: 32991783
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Short-term radiographic analysis of operative correction of adult acquired flatfoot deformity.
    Iossi M; Johnson JE; McCormick JJ; Klein SE
    Foot Ankle Int; 2013 Jun; 34(6):781-91. PubMed ID: 23386748
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Relationship Between Accessory Navicular and Flat Foot: A Radiologic Study.
    Park H; Hwang JH; Seo JO; Kim HW
    J Pediatr Orthop; 2015; 35(7):739-45. PubMed ID: 25393575
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Three-dimensional deep neural network for automatic delineation of cervical cancer in planning computed tomography images.
    Ding Y; Chen Z; Wang Z; Wang X; Hu D; Ma P; Ma C; Wei W; Li X; Xue X; Wang X
    J Appl Clin Med Phys; 2022 Apr; 23(4):e13566. PubMed ID: 35192243
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Correlation of Harris mats, physical exam, pictures, and radiographic measurements in adult flatfoot deformity.
    Coughlin MJ; Kaz A
    Foot Ankle Int; 2009 Jul; 30(7):604-12. PubMed ID: 19589305
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Selective hindfoot arthrodesis for the treatment of adult acquired flatfoot deformity: an in vitro study.
    O'Malley MJ; Deland JT; Lee KT
    Foot Ankle Int; 1995 Jul; 16(7):411-7. PubMed ID: 7550954
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets.
    Fashandi H; Kuling G; Lu Y; Wu H; Martel AL
    Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A multiple-channel and atrous convolution network for ultrasound image segmentation.
    Zhang L; Zhang J; Li Z; Song Y
    Med Phys; 2020 Dec; 47(12):6270-6285. PubMed ID: 33007105
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Deep-Learning-Based Automatic Segmentation of Head and Neck Organs for Radiation Therapy in Dogs.
    Park J; Choi B; Ko J; Chun J; Park I; Lee J; Kim J; Kim J; Eom K; Kim JS
    Front Vet Sci; 2021; 8():721612. PubMed ID: 34552975
    [No Abstract]   [Full Text] [Related]  

  • 56. SGEResU-Net for brain tumor segmentation.
    Liu D; Sheng N; He T; Wang W; Zhang J; Zhang J
    Math Biosci Eng; 2022 Mar; 19(6):5576-5590. PubMed ID: 35603369
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MFP-Unet: A novel deep learning based approach for left ventricle segmentation in echocardiography.
    Moradi S; Oghli MG; Alizadehasl A; Shiri I; Oveisi N; Oveisi M; Maleki M; Dhooge J
    Phys Med; 2019 Nov; 67():58-69. PubMed ID: 31671333
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Automated patellar height assessment on high-resolution radiographs with a novel deep learning-based approach.
    Kwolek K; Grzelecki D; Kwolek K; Marczak D; Kowalczewski J; Tyrakowski M
    World J Orthop; 2023 Jun; 14(6):387-398. PubMed ID: 37377994
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A data-driven semantic segmentation model for direct cardiac functional analysis based on undersampled radial MR cine series.
    Wech T; Ankenbrand MJ; Bley TA; Heidenreich JF
    Magn Reson Med; 2022 Feb; 87(2):972-983. PubMed ID: 34609026
    [TBL] [Abstract][Full Text] [Related]  

  • 60. U-Net based deep learning bladder segmentation in CT urography.
    Ma X; Hadjiiski LM; Wei J; Chan HP; Cha KH; Cohan RH; Caoili EM; Samala R; Zhou C; Lu Y
    Med Phys; 2019 Apr; 46(4):1752-1765. PubMed ID: 30734932
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.