These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 35358758)
1. Infancy and early childhood maturation of neural auditory change detection and its associations to familial dyslexia risk. Virtala P; Putkinen V; Kailaheimo-Lönnqvist L; Thiede A; Partanen E; Kujala T Clin Neurophysiol; 2022 May; 137():159-176. PubMed ID: 35358758 [TBL] [Abstract][Full Text] [Related]
2. Infant mismatch responses to speech-sound changes predict language development in preschoolers at risk for dyslexia. Navarrete-Arroyo S; Virtala P; Nie P; Kailaheimo-Lönnqvist L; Salonen S; Kujala T Clin Neurophysiol; 2024 Jun; 162():248-261. PubMed ID: 38492973 [TBL] [Abstract][Full Text] [Related]
3. An extensive pattern of atypical neural speech-sound discrimination in newborns at risk of dyslexia. Thiede A; Virtala P; Ala-Kurikka I; Partanen E; Huotilainen M; Mikkola K; Leppänen PHT; Kujala T Clin Neurophysiol; 2019 May; 130(5):634-646. PubMed ID: 30870799 [TBL] [Abstract][Full Text] [Related]
4. Cortical responses to tone and phoneme mismatch as a predictor of dyslexia? A systematic review. Volkmer S; Schulte-Körne G Schizophr Res; 2018 Jan; 191():148-160. PubMed ID: 28712970 [TBL] [Abstract][Full Text] [Related]
5. Feature-specific transition from positive mismatch response to mismatch negativity in early infancy: mismatch responses to vowels and initial consonants. Cheng YY; Wu HC; Tzeng YL; Yang MT; Zhao LL; Lee CY Int J Psychophysiol; 2015 May; 96(2):84-94. PubMed ID: 25819712 [TBL] [Abstract][Full Text] [Related]
6. Longitudinal trajectories of electrophysiological mismatch responses in infant speech discrimination differ across speech features. Werwach A; Männel C; Obrig H; Friederici AD; Schaadt G Dev Cogn Neurosci; 2022 Aug; 56():101127. PubMed ID: 35763917 [TBL] [Abstract][Full Text] [Related]
7. Beneficial effects of a music listening intervention on neural speech processing in 0-28-month-old children at risk for dyslexia. Paula V; Vesa P; Anastasia G; Anja T; Laurel J T; Teija K Dev Sci; 2023 Sep; 26(5):e13426. PubMed ID: 37350469 [TBL] [Abstract][Full Text] [Related]
8. Neural Underpinnings of Early Speech Perception and Emergent Literacy. Lee CY Folia Phoniatr Logop; 2019; 71(4):146-155. PubMed ID: 31018199 [TBL] [Abstract][Full Text] [Related]
9. Basic auditory processing is related to familial risk, not to reading fluency: an ERP study. Hakvoort B; van der Leij A; Maurits N; Maassen B; van Zuijen TL Cortex; 2015 Feb; 63():90-103. PubMed ID: 25243992 [TBL] [Abstract][Full Text] [Related]
10. Neural processing of changes in phonetic and emotional speech sounds and tones in preterm infants at term age. Kostilainen K; Partanen E; Mikkola K; Wikström V; Pakarinen S; Fellman V; Huotilainen M Int J Psychophysiol; 2020 Feb; 148():111-118. PubMed ID: 31734441 [TBL] [Abstract][Full Text] [Related]
11. Automatic auditory processing of english words as indexed by the mismatch negativity, using a multiple deviant paradigm. Pettigrew CM; Murdoch BE; Ponton CW; Finnigan S; Alku P; Kei J; Sockalingam R; Chenery HJ Ear Hear; 2004 Jun; 25(3):284-301. PubMed ID: 15179119 [TBL] [Abstract][Full Text] [Related]
12. Neural phoneme discrimination in variable speech in newborns - Associations with dyslexia risk and later language skills. Virtala P; Kujala T; Partanen E; Hämäläinen JA; Winkler I Brain Cogn; 2023 Jun; 168():105974. PubMed ID: 37037170 [TBL] [Abstract][Full Text] [Related]
13. Deficit in the preattentive processing of syllabic duration and VOT in children with dyslexia. Chobert J; François C; Habib M; Besson M Neuropsychologia; 2012 Jul; 50(8):2044-55. PubMed ID: 22595658 [TBL] [Abstract][Full Text] [Related]
14. Electrophysiological and phonological change detection measures of auditory word processing in normal Persian-speaking children. Ziatabar Ahmadi SZ; Mahmoudian S; Ashayeri H; Allaeddini F; Farhadi M Int J Pediatr Otorhinolaryngol; 2016 Nov; 90():220-226. PubMed ID: 27729137 [TBL] [Abstract][Full Text] [Related]
15. Abnormal pattern of cortical speech feature discrimination in 6-year-old children at risk for dyslexia. Lovio R; Näätänen R; Kujala T Brain Res; 2010 Jun; 1335():53-62. PubMed ID: 20381471 [TBL] [Abstract][Full Text] [Related]
16. Ziatabar Ahmadi Z; Mahmoudian S; Ashayeri H Dev Neuropsychol; 2022; 47(1):1-16. PubMed ID: 34927493 [TBL] [Abstract][Full Text] [Related]
17. Atypical central auditory speech-sound discrimination in children who stutter as indexed by the mismatch negativity. Jansson-Verkasalo E; Eggers K; Järvenpää A; Suominen K; Van den Bergh B; De Nil L; Kujala T J Fluency Disord; 2014 Sep; 41():1-11. PubMed ID: 25066139 [TBL] [Abstract][Full Text] [Related]
18. Mismatch responses to lexical tone, initial consonant, and vowel in Mandarin-speaking preschoolers. Lee CY; Yen HL; Yeh PW; Lin WH; Cheng YY; Tzeng YL; Wu HC Neuropsychologia; 2012 Dec; 50(14):3228-39. PubMed ID: 22981563 [TBL] [Abstract][Full Text] [Related]
19. Neural correlates of statistical learning in developmental dyslexia: An electroencephalography study. Daikoku T; Jentschke S; Tsogli V; Bergström K; Lachmann T; Ahissar M; Koelsch S Biol Psychol; 2023 Jul; 181():108592. PubMed ID: 37268263 [TBL] [Abstract][Full Text] [Related]
20. Children with dyslexia reveal abnormal native language representations: evidence from a study of mismatch negativity. Bruder J; Leppänen PH; Bartling J; Csépe V; Démonet JF; Schulte-Körne G Psychophysiology; 2011 Aug; 48(8):1107-18. PubMed ID: 21332488 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]