These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 35358842)
61. An efficient computational approach for three-dimensional modeling and simulation of fibrous battery electrodes. Goudarzi M; Grazioli D; Simone A Int J Numer Methods Eng; 2022 Apr; 123(7):1513-1546. PubMed ID: 35911078 [TBL] [Abstract][Full Text] [Related]
62. Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry. Kasnatscheew J; Wagner R; Winter M; Cekic-Laskovic I Top Curr Chem (Cham); 2018 Apr; 376(3):16. PubMed ID: 29671099 [TBL] [Abstract][Full Text] [Related]
63. Validation of a lithium-ion commercial battery pack model using experimental data for stationary energy management application. Foles A; Fialho L; Horta P; Collares-Pereira M Open Res Eur; 2022; 2():15. PubMed ID: 37645339 [No Abstract] [Full Text] [Related]
64. Research on Minimization of Data Set for State of Charge Prediction. Liu T; Zhao J; Xiang C; Cheng S Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161846 [TBL] [Abstract][Full Text] [Related]
65. Reaction uniformity visualized by Raman imaging in the composite electrode layers of all-solid-state lithium batteries. Otoyama M; Ito Y; Sakuda A; Tatsumisago M; Hayashi A Phys Chem Chem Phys; 2020 Jun; 22(23):13271-13276. PubMed ID: 32500881 [TBL] [Abstract][Full Text] [Related]
66. Jitter solution in parameter identification based on cross-time scale fusion algorithm of lithium-ion batteries. Su X; Ge Y; Qiao X Heliyon; 2024 Apr; 10(8):e29402. PubMed ID: 38655324 [TBL] [Abstract][Full Text] [Related]
67. Understanding the Reaction Chemistry during Charging in Aprotic Lithium-Oxygen Batteries: Existing Problems and Solutions. Shu C; Wang J; Long J; Liu HK; Dou SX Adv Mater; 2019 Apr; 31(15):e1804587. PubMed ID: 30767276 [TBL] [Abstract][Full Text] [Related]
68. Structural and material mechanical properties of human vertebral cancellous bone. Nicholson PH; Cheng XG; Lowet G; Boonen S; Davie MW; Dequeker J; Van der Perre G Med Eng Phys; 1997 Dec; 19(8):729-37. PubMed ID: 9450257 [TBL] [Abstract][Full Text] [Related]
69. Investigation of a commercial lithium-ion battery under overcharge/over-discharge failure conditions. Ouyang D; Chen M; Liu J; Wei R; Weng J; Wang J RSC Adv; 2018 Sep; 8(58):33414-33424. PubMed ID: 35548129 [TBL] [Abstract][Full Text] [Related]
70. Customized Kirigami Electrodes for Flexible and Deformable Lithium-Ion Batteries. Bao Y; Hong G; Chen Y; Chen J; Chen H; Song WL; Fang D ACS Appl Mater Interfaces; 2020 Jan; 12(1):780-788. PubMed ID: 31849209 [TBL] [Abstract][Full Text] [Related]
71. Mesoporous Single-Crystal Lithium Titanate Enabling Fast-Charging Li-Ion Batteries. Jin X; Han Y; Zhang Z; Chen Y; Li J; Yang T; Wang X; Li W; Han X; Wang Z; Liu X; Jiao H; Ke X; Sui M; Cao R; Zhang G; Tang Y; Yan P; Jiao S Adv Mater; 2022 May; 34(18):e2109356. PubMed ID: 35262214 [TBL] [Abstract][Full Text] [Related]
72. A Comprehensive Review of In Situ Measurement Techniques for Evaluating the Electro-Chemo-Mechanical Behaviors of Battery Electrodes. Jiang H; Chen J; Li X; Jin Z; Chen T; Liu J; Li D Molecules; 2024 Apr; 29(8):. PubMed ID: 38675692 [TBL] [Abstract][Full Text] [Related]
73. A Bifunctional Chemomechanics Strategy To Suppress Electrochemo-Mechanical Failure of Ni-Rich Cathodes for All-Solid-State Lithium Batteries. Sun X; Wang L; Ma J; Yu X; Zhang S; Zhou X; Cui G ACS Appl Mater Interfaces; 2022 Apr; 14(15):17674-17681. PubMed ID: 35394744 [TBL] [Abstract][Full Text] [Related]
74. Two-Dimensional Penta-BN Zhang T; Ma Y; Huang B; Dai Y ACS Appl Mater Interfaces; 2019 Feb; 11(6):6104-6110. PubMed ID: 30648381 [TBL] [Abstract][Full Text] [Related]
75. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface. Yu C; Ganapathy S; Eck ERHV; Wang H; Basak S; Li Z; Wagemaker M Nat Commun; 2017 Oct; 8(1):1086. PubMed ID: 29057868 [TBL] [Abstract][Full Text] [Related]
76. Prediction of lithium-ion battery SOC based on the fusion of MHA and ConvolGRU. Tang P; Hua J; Wang P; Qu Z; Jiang M Sci Rep; 2023 Oct; 13(1):16543. PubMed ID: 37783740 [TBL] [Abstract][Full Text] [Related]
77. Recycling of electrode materials from spent lithium-ion power batteries via thermal and mechanical treatments. Wu Z; Zhu H; Bi H; He P; Gao S Waste Manag Res; 2021 Apr; 39(4):607-619. PubMed ID: 33200691 [TBL] [Abstract][Full Text] [Related]
78. Preparation of Carbon Nanowall and Carbon Nanotube for Anode Material of Lithium-Ion Battery. Lee S; Kwon S; Kim K; Kang H; Ko JM; Choi W Molecules; 2021 Nov; 26(22):. PubMed ID: 34834041 [TBL] [Abstract][Full Text] [Related]
79. Propagation characteristics of ultrasonic weld-guided waves in Friction stir welding joint of same material. Wang Y; Gao T; Liu D; Sun H; Miao B; Qing X Ultrasonics; 2020 Mar; 102():106058. PubMed ID: 31948805 [TBL] [Abstract][Full Text] [Related]
80. From Materials to Cell: State-of-the-Art and Prospective Technologies for Lithium-Ion Battery Electrode Processing. Li J; Fleetwood J; Hawley WB; Kays W Chem Rev; 2022 Jan; 122(1):903-956. PubMed ID: 34705441 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]