These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 35358897)
1. Fully automatic resolution of untargeted GC-MS data with deep learning assistance. Fan X; Xu Z; Zhang H; Liu D; Yang Q; Tao Q; Wen M; Kang X; Zhang Z; Lu H Talanta; 2022 Jul; 244():123415. PubMed ID: 35358897 [TBL] [Abstract][Full Text] [Related]
2. Deep-Learning-Assisted multivariate curve resolution. Fan X; Ma P; Hou M; Ni Y; Fang Z; Lu H; Zhang Z J Chromatogr A; 2021 Jan; 1635():461713. PubMed ID: 33229011 [TBL] [Abstract][Full Text] [Related]
3. Deep learning-based method for automatic resolution of gas chromatography-mass spectrometry data from complex samples. Fan Y; Yu C; Lu H; Chen Y; Hu B; Zhang X; Su J; Zhang Z J Chromatogr A; 2023 Feb; 1690():463768. PubMed ID: 36641940 [TBL] [Abstract][Full Text] [Related]
4. ADAP-GC 3.0: Improved Peak Detection and Deconvolution of Co-eluting Metabolites from GC/TOF-MS Data for Metabolomics Studies. Ni Y; Su M; Qiu Y; Jia W; Du X Anal Chem; 2016 Sep; 88(17):8802-11. PubMed ID: 27461032 [TBL] [Abstract][Full Text] [Related]
5. ADAP-GC 3.2: Graphical Software Tool for Efficient Spectral Deconvolution of Gas Chromatography-High-Resolution Mass Spectrometry Metabolomics Data. Smirnov A; Jia W; Walker DI; Jones DP; Du X J Proteome Res; 2018 Jan; 17(1):470-478. PubMed ID: 29076734 [TBL] [Abstract][Full Text] [Related]
6. GC/MS technique and AMDIS software application in identification of hydrophobic compounds of grasshoppers' abdominal secretion (Chorthippus spp.). Buszewska-Forajta M; Bujak R; Yumba-Mpanga A; Siluk D; Kaliszan R J Pharm Biomed Anal; 2015 Jan; 102():331-9. PubMed ID: 25459932 [TBL] [Abstract][Full Text] [Related]
7. Peak alignment of gas chromatography-mass spectrometry data with deep learning. Li M; Wang XR J Chromatogr A; 2019 Oct; 1604():460476. PubMed ID: 31488294 [TBL] [Abstract][Full Text] [Related]
8. GCMSFormer: A Fully Automatic Method for the Resolution of Overlapping Peaks in Gas Chromatography-Mass Spectrometry. Guo Z; Fan Y; Yu C; Lu H; Zhang Z Anal Chem; 2024 Apr; 96(15):5878-5886. PubMed ID: 38560891 [TBL] [Abstract][Full Text] [Related]
9. ADAP-GC 2.0: deconvolution of coeluting metabolites from GC/TOF-MS data for metabolomics studies. Ni Y; Qiu Y; Jiang W; Suttlemyre K; Su M; Zhang W; Jia W; Du X Anal Chem; 2012 Aug; 84(15):6619-29. PubMed ID: 22747237 [TBL] [Abstract][Full Text] [Related]
10. ADAP-GC 4.0: Application of Clustering-Assisted Multivariate Curve Resolution to Spectral Deconvolution of Gas Chromatography-Mass Spectrometry Metabolomics Data. Smirnov A; Qiu Y; Jia W; Walker DI; Jones DP; Du X Anal Chem; 2019 Jul; 91(14):9069-9077. PubMed ID: 31274283 [TBL] [Abstract][Full Text] [Related]
11. Metabolomics Data Preprocessing Using ADAP and MZmine 2. Du X; Smirnov A; Pluskal T; Jia W; Sumner S Methods Mol Biol; 2020; 2104():25-48. PubMed ID: 31953811 [TBL] [Abstract][Full Text] [Related]
12. Comparison of gas chromatography-pulsed flame photometric detection-mass spectrometry, automated mass spectral deconvolution and identification system and gas chromatography-tandem mass spectrometry as tools for trace level detection and identification. Dagan S J Chromatogr A; 2000 Feb; 868(2):229-47. PubMed ID: 10701673 [TBL] [Abstract][Full Text] [Related]
13. Non-targeted Gas Chromatography Orbitrap Mass Spectrometry qualitative and quantitative analysis of semi-volatile organic compounds in indoor dust using the Regions of Interest Multivariate Curve Resolution chemometrics procedure. Pourasil RSM; Cristale J; Lacorte S; Tauler R J Chromatogr A; 2022 Apr; 1668():462907. PubMed ID: 35276410 [TBL] [Abstract][Full Text] [Related]
14. Using deep learning to evaluate peaks in chromatographic data. Risum AB; Bro R Talanta; 2019 Nov; 204():255-260. PubMed ID: 31357290 [TBL] [Abstract][Full Text] [Related]
15. A comprehensive automatic data analysis strategy for gas chromatography-mass spectrometry based untargeted metabolomics. Zhang YY; Zhang Q; Zhang YM; Wang WW; Zhang L; Yu YJ; Bai CC; Guo JZ; Fu HY; She Y J Chromatogr A; 2020 Apr; 1616():460787. PubMed ID: 31864723 [TBL] [Abstract][Full Text] [Related]
16. TagFinder for the quantitative analysis of gas chromatography--mass spectrometry (GC-MS)-based metabolite profiling experiments. Luedemann A; Strassburg K; Erban A; Kopka J Bioinformatics; 2008 Mar; 24(5):732-7. PubMed ID: 18204057 [TBL] [Abstract][Full Text] [Related]
17. 3D-MSNet: a point cloud-based deep learning model for untargeted feature detection and quantification in profile LC-HRMS data. Wang R; Lu M; An S; Wang J; Yu C Bioinformatics; 2023 May; 39(5):. PubMed ID: 37071700 [TBL] [Abstract][Full Text] [Related]
18. Independent evaluation of a commercial deconvolution reporting software for gas chromatography mass spectrometry analysis of pesticide residues in fruits and vegetables. Norli HR; Christiansen A; Holen B J Chromatogr A; 2010 Mar; 1217(13):2056-64. PubMed ID: 20172528 [TBL] [Abstract][Full Text] [Related]
19. The use of multivariate curve resolution methods to improve the analysis of muramic acid as bacterial marker using gas chromatography-mass spectrometry: an alternative method to gas chromatography-tandem mass spectrometry. Moazeni-Pourasil RS; Piri F; Ghassempour A; Jalali-Heravi M J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Feb; 949-950():1-6. PubMed ID: 24441017 [TBL] [Abstract][Full Text] [Related]