These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 3535892)

  • 41. Evidence for histidine residues in the immunoglobulin-binding site of human Clq.
    Easterbrook-Smith SB
    Biosci Rep; 1983 Feb; 3(2):135-40. PubMed ID: 6221769
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An essential active-site histidine residue in human prostatic acid phosphatase. Ethoxyformylation by diethyl pyrocarbonate and phosphorylation by a substrate.
    McTigue JJ; Van Etten RL
    Biochim Biophys Acta; 1978 Apr; 523(2):407-21. PubMed ID: 656435
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Kinetics of L-[14C]leucine transport in Saccharomyces cerevisiae: effect of energy coupling inhibitors.
    Ramos EH; de Bongioanni LC; Stoppani AO
    Biochim Biophys Acta; 1980 Jun; 599(1):214-31. PubMed ID: 6994811
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Folate transport in intestinal brush border membrane: involvement of essential histidine residue(s).
    Said HM; Mohammadkhani R
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):237-40. PubMed ID: 8439292
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The chemical modification of beef liver catalase. V. Ethoxyformylation of histidine and tyrosine residues of catalase with diethylpyrocarbonate.
    Abe K; Anan FK
    J Biochem; 1976 Aug; 80(2):229-37. PubMed ID: 12142
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modification of system A amino acid carrier by diethyl pyrocarbonate.
    Bertran J; Roca A; Pola E; Testar X; Zorzano A; Palacín M
    J Biol Chem; 1991 Jan; 266(2):798-802. PubMed ID: 1985965
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Proline transport and stress tolerance of ammonia-insensitive mutants of the PUT4-encoded proline-specific permease in yeast.
    Poole K; E Walker M; Warren T; Gardner J; McBryde C; de Barros Lopes M; Jiranek V
    J Gen Appl Microbiol; 2009 Dec; 55(6):427-39. PubMed ID: 20118607
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Determination of transport kinetics of chick MCT3 monocarboxylate transporter from retinal pigment epithelium by expression in genetically modified yeast.
    Grollman EF; Philp NJ; McPhie P; Ward RD; Sauer B
    Biochemistry; 2000 Aug; 39(31):9351-7. PubMed ID: 10924129
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-affinity binding of proline to mouse brain synaptic membranes.
    Ortiz JG; Negrón AE; Bruno MS
    Neurochem Res; 1989 Feb; 14(2):139-42. PubMed ID: 2725813
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protection by histidine against oxidative inactivation of AMP deaminase in yeast.
    Murakami K; Onoda Y; Kimura J; Yoshino M
    Biochem Mol Biol Int; 1997 Aug; 42(5):1063-9. PubMed ID: 9285075
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Possible site-specific reagent for the general amino acid transport system of Saccharomyces cerevisiae.
    Larimore FS; Roon RJ
    Biochemistry; 1978 Feb; 17(3):431-6. PubMed ID: 339948
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of the histidine-35 residue in the cytocidal action of HM-1 killer toxin.
    Miyamoto M; Onozato N; Selvakumar D; Kimura T; Furuichi Y; Komiyama T
    Microbiology (Reading); 2006 Oct; 152(Pt 10):2951-2958. PubMed ID: 17005976
    [TBL] [Abstract][Full Text] [Related]  

  • 53. L-Proline uptake in Saccharomyces cerevisiae mitochondria can contribute to bioenergetics during nutrient stress as alternative mitochondrial fuel.
    Pallotta ML
    World J Microbiol Biotechnol; 2014 Jan; 30(1):19-31. PubMed ID: 23824663
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanism of ligand-protein interaction in plant seed thiamine-binding proteins. Preliminary chemical identification of amino acid residues essential for thiamine binding to the buckwheat-seed protein.
    Rapala-Kozik M; Kozik A
    Biochimie; 1996; 78(2):77-84. PubMed ID: 8818213
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reaction of histidine residues in proteins with diethylpyrocarbonate: differential molar absorptivities and reactivities.
    Roosemont JL
    Anal Biochem; 1978 Jul; 88(1):314-20. PubMed ID: 697005
    [No Abstract]   [Full Text] [Related]  

  • 56. Inactivation of Saccharomyces cerevisiae sulfate transporter Sul2p: use it and lose it.
    Jennings ML; Cui J
    Biophys J; 2012 Feb; 102(4):768-76. PubMed ID: 22385847
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Uptake of L-lysine by a double mutant of Saccharomyces cerevisiae.
    García JC; Kotyk A
    Folia Microbiol (Praha); 1988; 33(4):285-91. PubMed ID: 3141253
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Energetics of proline racemase: racemization of unlabeled proline in the unsaturated, saturated, and oversaturated regimes.
    Fisher LM; Albery WJ; Knowles JR
    Biochemistry; 1986 May; 25(9):2529-37. PubMed ID: 3755058
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Temperature effects on the proline transport system of Saccharomyces chevalieri.
    Schwencke J; Magaña-Schwencke N
    Biochim Biophys Acta; 1971 Aug; 241(2):513-21. PubMed ID: 5159795
    [No Abstract]   [Full Text] [Related]  

  • 60. [Differential distribution of L-histidine and L-proline in the autoradiogram of the mouse cerebellum].
    Garweg G
    Naturwissenschaften; 1969 Sep; 56(9):463-4. PubMed ID: 5362722
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.