These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35358959)

  • 1. FBDNN: filter banks and deep neural networks for portable and fast brain-computer interfaces.
    Bassi PRAS; Attux R
    Biomed Phys Eng Express; 2022 Apr; 8(3):. PubMed ID: 35358959
    [No Abstract]   [Full Text] [Related]  

  • 2. Filter banks guided correlational convolutional neural network for SSVEPs based BCI classification.
    Wen X; Jia S; Han D; Dong Y; Gao C; Cao R; Hao Y; Guo Y; Cao R
    J Neural Eng; 2024 Oct; 21(5):. PubMed ID: 39321841
    [No Abstract]   [Full Text] [Related]  

  • 3. Comparing user-dependent and user-independent training of CNN for SSVEP BCI.
    Ravi A; Beni NH; Manuel J; Jiang N
    J Neural Eng; 2020 Apr; 17(2):026028. PubMed ID: 31923910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A transformer-based deep neural network model for SSVEP classification.
    Chen J; Zhang Y; Pan Y; Xu P; Guan C
    Neural Netw; 2023 Jul; 164():521-534. PubMed ID: 37209444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady-State Visual Evoked Potential Classification Using Complex Valued Convolutional Neural Networks.
    Ikeda A; Washizawa Y
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IENet: a robust convolutional neural network for EEG based brain-computer interfaces.
    Du Y; Liu J
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35605585
    [No Abstract]   [Full Text] [Related]  

  • 7. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface.
    Chen X; Wang Y; Gao S; Jung TP; Gao X
    J Neural Eng; 2015 Aug; 12(4):046008. PubMed ID: 26035476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer learning of an ensemble of DNNs for SSVEP BCI spellers without user-specific training.
    Berke Guney O; Ozkan H
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36535036
    [No Abstract]   [Full Text] [Related]  

  • 9. 3D Input Convolutional Neural Network for SSVEP Classification in Design of Brain Computer Interface for Patient User.
    Oralhan Z; Oralhan B; Khayyat MM; Abdel-Khalek S; Mansour RF
    Comput Math Methods Med; 2022; 2022():8452002. PubMed ID: 35664638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic decomposition graph convolutional neural network for SSVEP-based brain-computer interface.
    Zhang S; An D; Liu J; Chen J; Wei Y; Sun F
    Neural Netw; 2024 Apr; 172():106075. PubMed ID: 38278092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TRCA-Net: using TRCA filters to boost the SSVEP classification with convolutional neural network.
    Deng Y; Sun Q; Wang C; Wang Y; Zhou SK
    J Neural Eng; 2023 Jul; 20(4):. PubMed ID: 37399806
    [No Abstract]   [Full Text] [Related]  

  • 12. FB-EEGNet: A fusion neural network across multi-stimulus for SSVEP target detection.
    Yao H; Liu K; Deng X; Tang X; Yu H
    J Neurosci Methods; 2022 Sep; 379():109674. PubMed ID: 35842015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Training -Free Steady-State Visual Evoked Potential Brain-Computer Interface Based on Filter Bank Canonical Correlation Analysis and Spatiotemporal Beamforming Decoding.
    Ge S; Jiang Y; Wang P; Wang H; Zheng W
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1714-1723. PubMed ID: 31403435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Relative Contribution of Deep Convolutional Neural Networks for SSVEP-Based Bio-Signal Decoding in BCI Speller Applications.
    Podmore JJ; Breckon TP; Aznan NKN; Connolly JD
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):611-618. PubMed ID: 30872236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel training-free recognition method for SSVEP-based BCIs using dynamic window strategy.
    Chen Y; Yang C; Chen X; Wang Y; Gao X
    J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 32380480
    [No Abstract]   [Full Text] [Related]  

  • 16. An efficient CNN-LSTM network with spectral normalization and label smoothing technologies for SSVEP frequency recognition.
    Pan Y; Chen J; Zhang Y; Zhang Y
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36041426
    [No Abstract]   [Full Text] [Related]  

  • 17. Filter Bank Convolutional Neural Network for Short Time-Window Steady-State Visual Evoked Potential Classification.
    Ding W; Shan J; Fang B; Wang C; Sun F; Li X
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2615-2624. PubMed ID: 34851830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials.
    Waytowich N; Lawhern VJ; Garcia JO; Cummings J; Faller J; Sajda P; Vettel JM
    J Neural Eng; 2018 Dec; 15(6):066031. PubMed ID: 30279309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A CNN-based multi-target fast classification method for AR-SSVEP.
    Zhao X; Du Y; Zhang R
    Comput Biol Med; 2022 Feb; 141():105042. PubMed ID: 34802710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SSVEP-EEG Feature Enhancement Method Using an Image Sharpening Filter.
    Yan W; Xu G; Du Y; Chen X
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():115-123. PubMed ID: 35025745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.