These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 35359104)

  • 1. Recent advances on inactivation of waterborne pathogenic microorganisms by (photo) electrochemical oxidation processes: Design and application strategies.
    Lu S; Zhang G
    J Hazard Mater; 2022 Jun; 431():128619. PubMed ID: 35359104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photo-assisted electrochemical advanced oxidation processes for the disinfection of aqueous solutions: A review.
    García-Espinoza JD; Robles I; Durán-Moreno A; Godínez LA
    Chemosphere; 2021 Jul; 274():129957. PubMed ID: 33979920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation and prospects of nanomaterial-enabled innovative processes and devices for water disinfection: A state-of-the-art review.
    Huo ZY; Du Y; Chen Z; Wu YH; Hu HY
    Water Res; 2020 Apr; 173():115581. PubMed ID: 32058153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Fiber-Based Flow-Through Electrode System (FES) for Water Disinfection via Direct Oxidation Mechanism with a Sequential Reduction-Oxidation Process.
    Liu H; Ni XY; Huo ZY; Peng L; Li GQ; Wang C; Wu YH; Hu HY
    Environ Sci Technol; 2019 Mar; 53(6):3238-3249. PubMed ID: 30768244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of marine heterotrophic bacteria in ballast water by an Electrochemical Advanced Oxidation Process.
    Moreno-Andrés J; Ambauen N; Vadstein O; Hallé C; Acevedo-Merino A; Nebot E; Meyn T
    Water Res; 2018 Sep; 140():377-386. PubMed ID: 29753242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating efficacy of field-generated electrochemical oxidants on disinfection of fomites using bacteriophage MS2 and mouse norovirus MNV-1 as pathogenic virus surrogates.
    Julian TR; Trumble JM; Schwab KJ
    Food Environ Virol; 2014 Jun; 6(2):145-55. PubMed ID: 24562764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes.
    Jeong J; Kim C; Yoon J
    Water Res; 2009 Mar; 43(4):895-901. PubMed ID: 19084255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of reactive oxygen species in the electrochemical inactivation of microorganisms.
    Jeong J; Kim JY; Yoon J
    Environ Sci Technol; 2006 Oct; 40(19):6117-22. PubMed ID: 17051809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of carbonized and graphitized carbon fiber electrodes under flow-through electrode system (FES) for high-efficiency bacterial inactivation.
    Ni XY; Liu H; Wang C; Wang WL; Xu ZB; Chen Z; Wu YH; Hu HY
    Water Res; 2020 Jan; 168():115150. PubMed ID: 31606556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation of X-ray contrast media by conventional and advanced oxidation processes during water treatment: Efficiency, oxidation intermediates, and formation of iodinated byproducts.
    Li J; Jiang J; Pang SY; Yang Y; Sun S; Wang L; Wang P
    Water Res; 2020 Oct; 185():116234. PubMed ID: 32736280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of disinfection and halogenated disinfection byproducts by the electrochemical process.
    Jung YJ; Oh BS; Kang JW; Page MA; Phillips MJ; Mariñas BJ
    Water Sci Technol; 2007; 55(12):213-9. PubMed ID: 17674851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of Escherichia coli in the electrochemical disinfection process using a Pt anode.
    Jeong J; Kim JY; Cho M; Choi W; Yoon J
    Chemosphere; 2007 Mar; 67(4):652-9. PubMed ID: 17217993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient inactivation of bacteria in ballast water by adding potassium peroxymonosulfate alone: Role of halide ions.
    Xu X; Ran Z; Wen G; Liang Z; Wan Q; Chen Z; Lin Y; Li K; Wang J; Huang T
    Chemosphere; 2020 Aug; 253():126656. PubMed ID: 32278911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water Disinfection in Rural Areas Demands Unconventional Solar Technologies.
    Chu C; Ryberg EC; Loeb SK; Suh MJ; Kim JH
    Acc Chem Res; 2019 May; 52(5):1187-1195. PubMed ID: 30943006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of pathogenic microorganisms in freshwater using HSO
    Rodríguez-Chueca J; Silva T; Fernandes JR; Lucas MS; Puma GL; Peres JA; Sampaio A
    Water Res; 2017 Oct; 123():113-123. PubMed ID: 28651081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of Pseudomonas aeruginosa in electrochemical advanced oxidation process with diamond electrodes.
    Griessler M; Knetsch S; Schimpf E; Schmidhuber A; Schrammel B; Wesner W; Sommer R; Kirschner AK
    Water Sci Technol; 2011; 63(9):2010-6. PubMed ID: 21902043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Airborne disinfection using microwave-based technology: Energy efficient and distinct inactivation mechanism compared with waterborne disinfection.
    Wang C; Hu X; Zhang Z
    J Aerosol Sci; 2019 Nov; 137():105437. PubMed ID: 32226120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in drinking water disinfection: successes and challenges.
    Ngwenya N; Ncube EJ; Parsons J
    Rev Environ Contam Toxicol; 2013; 222():111-70. PubMed ID: 22990947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-frequency ultrasound: Strengths and shortcomings to water treatment and disinfection.
    Matafonova G; Batoev V
    Water Res; 2020 Sep; 182():116016. PubMed ID: 32619682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow electrochemical inactivation of waterborne bacterial endospores.
    Wei R; Tong H; Zhang J; Sun B; You S
    J Hazard Mater; 2023 Mar; 445():130505. PubMed ID: 36463735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.