BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35359361)

  • 1. Clinical Evaluation of an Auto-Segmentation Tool for Spine SBRT Treatment.
    Chen Y; Vinogradskiy Y; Yu Y; Shi W; Liu H
    Front Oncol; 2022; 12():842579. PubMed ID: 35359361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a Dedicated Software "Elements™ Spine SRS, Brainlab
    Rogé M; Henni AH; Neggaz YA; Mallet R; Hanzen C; Dubray B; Colard E; Gensanne D; Thureau S
    Front Oncol; 2022; 12():827195. PubMed ID: 35646624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. International consensus recommendations for target volume delineation specific to sacral metastases and spinal stereotactic body radiation therapy (SBRT).
    Dunne EM; Sahgal A; Lo SS; Bergman A; Kosztyla R; Dea N; Chang EL; Chang UK; Chao ST; Faruqi S; Ghia AJ; Redmond KJ; Soltys SG; Liu MC
    Radiother Oncol; 2020 Apr; 145():21-29. PubMed ID: 31874346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of inter-observer differences in the delineation of the target in spinal metastases SBRT using an automatic contouring dedicated system.
    Giaj-Levra N; Figlia V; Cuccia F; Mazzola R; Nicosia L; Ricchetti F; Rigo M; Attinà G; Vitale C; Sicignano G; De Simone A; Naccarato S; Ruggieri R; Alongi F
    Radiat Oncol; 2021 Oct; 16(1):197. PubMed ID: 34627313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation on Auto-segmentation of the Clinical Target Volume (CTV) for Graves' Ophthalmopathy (GO) with a Fully Convolutional Network (FCN) on CT Images.
    Jiang J; Luo Y; Wang F; Fu Y; Yu H; He Y
    Curr Med Imaging; 2021; 17(3):404-409. PubMed ID: 32914716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initial Evaluation of a Novel Cone-Beam CT-Based Semi-Automated Online Adaptive Radiotherapy System for Head and Neck Cancer Treatment - A Timing and Automation Quality Study.
    Yoon SW; Lin H; Alonso-Basanta M; Anderson N; Apinorasethkul O; Cooper K; Dong L; Kempsey B; Marcel J; Metz J; Scheuermann R; Li T
    Cureus; 2020 Aug; 12(8):e9660. PubMed ID: 32923257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. International Multi-institutional Patterns of Contouring Practice and Clinical Target Volume Recommendations for Stereotactic Body Radiation Therapy for Non-Spine Bone Metastases.
    Nguyen TK; Chin L; Sahgal A; Dagan R; Eppinga W; Guckenberger M; Kim JH; Lo SS; Redmond KJ; Siva S; Stish BJ; Chan R; Lawrence L; Lau A; Tseng CL
    Int J Radiat Oncol Biol Phys; 2022 Feb; 112(2):351-360. PubMed ID: 34509549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fully automatic approach for multimodal PET and MR image segmentation in gamma knife treatment planning.
    Rundo L; Stefano A; Militello C; Russo G; Sabini MG; D'Arrigo C; Marletta F; Ippolito M; Mauri G; Vitabile S; Gilardi MC
    Comput Methods Programs Biomed; 2017 Jun; 144():77-96. PubMed ID: 28495008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inter-observer variation of target volume delineation for CT-guided cervical cancer brachytherapy.
    Elmali A; Biltekin F; Sari SY; Gultekin M; Yuce D; Yildiz F
    J Contemp Brachytherapy; 2023 Aug; 15(4):253-260. PubMed ID: 37799120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepTarget: Gross tumor and clinical target volume segmentation in esophageal cancer radiotherapy.
    Jin D; Guo D; Ho TY; Harrison AP; Xiao J; Tseng CK; Lu L
    Med Image Anal; 2021 Feb; 68():101909. PubMed ID: 33341494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully automated clinical target volume segmentation for glioblastoma radiotherapy using a deep convolutional neural network.
    Sadeghi S; Farzin M; Gholami S
    Pol J Radiol; 2023; 88():e31-e40. PubMed ID: 36819221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study.
    Choi MS; Chang JS; Kim K; Kim JH; Kim TH; Kim S; Cha H; Cho O; Choi JH; Kim M; Kim J; Kim TG; Yeo SG; Chang AR; Ahn SJ; Choi J; Kang KM; Kwon J; Koo T; Kim MY; Choi SH; Jeong BK; Jang BS; Jo IY; Lee H; Kim N; Park HJ; Im JH; Lee SW; Cho Y; Lee SY; Chang JH; Chun J; Lee EM; Kim JS; Shin KH; Kim YB
    Breast; 2024 Feb; 73():103599. PubMed ID: 37992527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A deep learning-based framework for segmenting invisible clinical target volumes with estimated uncertainties for post-operative prostate cancer radiotherapy.
    Balagopal A; Nguyen D; Morgan H; Weng Y; Dohopolski M; Lin MH; Barkousaraie AS; Gonzalez Y; Garant A; Desai N; Hannan R; Jiang S
    Med Image Anal; 2021 Aug; 72():102101. PubMed ID: 34111573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prior information guided auto-segmentation of clinical target volume of tumor bed in postoperative breast cancer radiotherapy.
    Xie X; Song Y; Ye F; Wang S; Yan H; Zhao X; Dai J
    Radiat Oncol; 2023 Oct; 18(1):170. PubMed ID: 37840132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic clinical target volume delineation for cervical cancer in CT images using deep learning.
    Shi J; Ding X; Liu X; Li Y; Liang W; Wu J
    Med Phys; 2021 Jul; 48(7):3968-3981. PubMed ID: 33905545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auto-segmentation of low-risk clinical target volume for head and neck radiation therapy.
    Yang J; Beadle BM; Garden AS; Gunn B; Rosenthal D; Ang K; Frank S; Williamson R; Balter P; Court L; Dong L
    Pract Radiat Oncol; 2014; 4(1):e31-7. PubMed ID: 24621429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of deep learning-based auto-segmentation algorithms for delineating clinical target volume and organs at risk involving data for 125 cervical cancer patients.
    Wang Z; Chang Y; Peng Z; Lv Y; Shi W; Wang F; Pei X; Xu XG
    J Appl Clin Med Phys; 2020 Dec; 21(12):272-279. PubMed ID: 33238060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery.
    Chung SY; Chang JS; Choi MS; Chang Y; Choi BS; Chun J; Keum KC; Kim JS; Kim YB
    Radiat Oncol; 2021 Feb; 16(1):44. PubMed ID: 33632248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consensus guidelines for postoperative stereotactic body radiation therapy for spinal metastases: results of an international survey.
    Redmond KJ; Lo SS; Soltys SG; Yamada Y; Barani IJ; Brown PD; Chang EL; Gerszten PC; Chao ST; Amdur RJ; De Salles AA; Guckenberger M; Teh BS; Sheehan J; Kersh CR; Fehlings MG; Sohn MJ; Chang UK; Ryu S; Gibbs IC; Sahgal A
    J Neurosurg Spine; 2017 Mar; 26(3):299-306. PubMed ID: 27834628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based auto-segmentation of clinical target volumes for radiotherapy treatment of cervical cancer.
    Ma CY; Zhou JY; Xu XT; Guo J; Han MF; Gao YZ; Du H; Stahl JN; Maltz JS
    J Appl Clin Med Phys; 2022 Feb; 23(2):e13470. PubMed ID: 34807501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.