These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 35359731)
21. Bioactive fractions from the pasture legume Biserrula pelecinus L. have an anti-methanogenic effect against key rumen methanogens. Banik BK; Durmic Z; Erskine W; Revell CK; Vadhanabhuti J; McSweeney CS; Padmanabha J; Flematti GR; Algreiby AA; Vercoe PE Anaerobe; 2016 Jun; 39():173-82. PubMed ID: 27060275 [TBL] [Abstract][Full Text] [Related]
22. Rumen methanogen and protozoal communities of Tibetan sheep and Gansu Alpine Finewool sheep grazing on the Qinghai-Tibetan Plateau, China. Huang J; Li Y BMC Microbiol; 2018 Dec; 18(1):212. PubMed ID: 30545295 [TBL] [Abstract][Full Text] [Related]
23. Gene and transcript abundances of bacterial type III secretion systems from the rumen microbiome are correlated with methane yield in sheep. Kamke J; Soni P; Li Y; Ganesh S; Kelly WJ; Leahy SC; Shi W; Froula J; Rubin EM; Attwood GT BMC Res Notes; 2017 Aug; 10(1):367. PubMed ID: 28789673 [TBL] [Abstract][Full Text] [Related]
24. Erratum: Inhibition of Rumen Methanogens by a Novel Archaeal Lytic Enzyme Displayed on Tailored Bionanoparticles. Frontiers Production Office Front Microbiol; 2018; 9():2982. PubMed ID: 30515149 [TBL] [Abstract][Full Text] [Related]
25. Microbial ecosystem and methanogenesis in ruminants. Morgavi DP; Forano E; Martin C; Newbold CJ Animal; 2010 Jul; 4(7):1024-36. PubMed ID: 22444607 [TBL] [Abstract][Full Text] [Related]
26. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Patra AK; Saxena J Phytochemistry; 2010 Aug; 71(11-12):1198-222. PubMed ID: 20570294 [TBL] [Abstract][Full Text] [Related]
27. The complete genome sequence of the methanogenic archaeon ISO4-H5 provides insights into the methylotrophic lifestyle of a ruminal representative of the Methanomassiliicoccales. Li Y; Leahy SC; Jeyanathan J; Henderson G; Cox F; Altermann E; Kelly WJ; Lambie SC; Janssen PH; Rakonjac J; Attwood GT Stand Genomic Sci; 2016; 11(1):59. PubMed ID: 27602181 [TBL] [Abstract][Full Text] [Related]
28. Bovicins: The Bacteriocins of Streptococci and Their Potential in Methane Mitigation. Garsa AK; Choudhury PK; Puniya AK; Dhewa T; Malik RK; Tomar SK Probiotics Antimicrob Proteins; 2019 Dec; 11(4):1403-1413. PubMed ID: 30603877 [TBL] [Abstract][Full Text] [Related]
29. Ginkgo fruit extract as an additive to modify rumen microbiota and fermentation and to mitigate methane production. Oh S; Shintani R; Koike S; Kobayashi Y J Dairy Sci; 2017 Mar; 100(3):1923-1934. PubMed ID: 28088403 [TBL] [Abstract][Full Text] [Related]
30. The Effect of Dietary Replacement of Ordinary Rice with Red Yeast Rice on Nutrient Utilization, Enteric Methane Emission and Rumen Archaeal Diversity in Goats. Wang LZ; Zhou ML; Wang JW; Wu D; Yan T PLoS One; 2016; 11(7):e0160198. PubMed ID: 27467559 [TBL] [Abstract][Full Text] [Related]
31. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation. Kamke J; Kittelmann S; Soni P; Li Y; Tavendale M; Ganesh S; Janssen PH; Shi W; Froula J; Rubin EM; Attwood GT Microbiome; 2016 Oct; 4(1):56. PubMed ID: 27760570 [TBL] [Abstract][Full Text] [Related]
32. Comparative Microbiome Analysis Reveals the Ecological Relationships Between Rumen Methanogens, Acetogens, and Their Hosts. Li Z; Wang X; Alberdi A; Deng J; Zhong Z; Si H; Zheng C; Zhou H; Wang J; Yang Y; Wright AG; Mao S; Zhang Z; Guan L; Li G Front Microbiol; 2020; 11():1311. PubMed ID: 32714292 [TBL] [Abstract][Full Text] [Related]
33. Invited review: Enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. Knapp JR; Laur GL; Vadas PA; Weiss WP; Tricarico JM J Dairy Sci; 2014; 97(6):3231-61. PubMed ID: 24746124 [TBL] [Abstract][Full Text] [Related]
34. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. Patra A; Park T; Kim M; Yu Z J Anim Sci Biotechnol; 2017; 8():13. PubMed ID: 28149512 [TBL] [Abstract][Full Text] [Related]
35. In Vitro Response of Rumen Microbiota to the Antimethanogenic Red Macroalga Asparagopsis taxiformis. Machado L; Tomkins N; Magnusson M; Midgley DJ; de Nys R; Rosewarne CP Microb Ecol; 2018 Apr; 75(3):811-818. PubMed ID: 29018917 [TBL] [Abstract][Full Text] [Related]
36. Are Vaccines the Solution for Methane Emissions from Ruminants? A Systematic Review. Baca-González V; Asensio-Calavia P; González-Acosta S; Pérez de la Lastra JM; Morales de la Nuez A Vaccines (Basel); 2020 Aug; 8(3):. PubMed ID: 32825375 [TBL] [Abstract][Full Text] [Related]
37. Methane emissions changed nonlinearly with graded substitution of alfalfa silage with corn silage and corn grain in the diet of sheep and relation with rumen fermentation characteristics in vivo and in vitro. Jonker A; Lowe K; Kittelmann S; Janssen PH; Ledgard S; Pacheco D J Anim Sci; 2016 Aug; 94(8):3464-3475. PubMed ID: 27695787 [TBL] [Abstract][Full Text] [Related]
38. Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism. Wallace RJ; Snelling TJ; McCartney CA; Tapio I; Strozzi F Genet Sel Evol; 2017 Jan; 49(1):9. PubMed ID: 28093073 [TBL] [Abstract][Full Text] [Related]
39. Methane Emissions from Ruminants in Australia: Mitigation Potential and Applicability of Mitigation Strategies. Black JL; Davison TM; Box I Animals (Basel); 2021 Mar; 11(4):. PubMed ID: 33805324 [TBL] [Abstract][Full Text] [Related]
40. The use of direct-fed microbials for mitigation of ruminant methane emissions: a review. Jeyanathan J; Martin C; Morgavi DP Animal; 2014 Feb; 8(2):250-61. PubMed ID: 24274095 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]