These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 35359731)
41. Medicinal herbs as a potential strategy to decrease methane production by rumen microbiota: a systematic evaluation with a focus on Perilla frutescens seed extract. Wang J; Liu M; Wu Y; Wang L; Liu J; Jiang L; Yu Z Appl Microbiol Biotechnol; 2016 Nov; 100(22):9757-9771. PubMed ID: 27660180 [TBL] [Abstract][Full Text] [Related]
42. Cross-reactivity of antibodies to different rumen methanogens demonstrated using immunomagnetic capture technology. Khanum S; Roberts JM; Heathcott RW; Bagley S; Wilson T; Gupta SK; Kirk MR; Heiser A; Janssen PH; Wedlock DN Front Microbiol; 2022; 13():918111. PubMed ID: 36071968 [TBL] [Abstract][Full Text] [Related]
43. Fungal secondary metabolites from Monascus spp. reduce rumen methane production in vitro and in vivo. Morgavi DP; Martin C; Boudra H J Anim Sci; 2013 Feb; 91(2):848-60. PubMed ID: 23307850 [TBL] [Abstract][Full Text] [Related]
44. Effects of mineral salt supplement on enteric methane emissions, ruminal fermentation and methanogen community of lactating cows. Li X; Liu C; Chen Y; Shi R; Cheng Z; Dong H Anim Sci J; 2017 Aug; 88(8):1049-1057. PubMed ID: 27921362 [TBL] [Abstract][Full Text] [Related]
45. Factors affecting methane production and mitigation in ruminants. Shibata M; Terada F Anim Sci J; 2010 Feb; 81(1):2-10. PubMed ID: 20163666 [TBL] [Abstract][Full Text] [Related]
46. Associative effects of wet distiller's grains plus solubles and tannin-rich peanut skin supplementation on in vitro rumen fermentation, greenhouse gas emissions, and microbial changes1. Min BR; Castleberry L; Allen H; Parker D; Waldrip H; Brauer D; Willis W J Anim Sci; 2019 Nov; 97(11):4668-4681. PubMed ID: 31603200 [TBL] [Abstract][Full Text] [Related]
47. Methanogens and methanogenesis in the rumens and ceca of lambs fed two different high-grain-content diets. Popova M; Morgavi DP; Martin C Appl Environ Microbiol; 2013 Mar; 79(6):1777-86. PubMed ID: 23241983 [TBL] [Abstract][Full Text] [Related]
49. Application of Mootral Eger M; Graz M; Riede S; Breves G Front Microbiol; 2018; 9():2094. PubMed ID: 30233557 [TBL] [Abstract][Full Text] [Related]
50. Rumen protozoa and methanogenesis: not a simple cause-effect relationship. Morgavi DP; Martin C; Jouany JP; Ranilla MJ Br J Nutr; 2012 Feb; 107(3):388-97. PubMed ID: 21762544 [TBL] [Abstract][Full Text] [Related]
51. Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions. Patra AK Environ Monit Assess; 2012 Apr; 184(4):1929-52. PubMed ID: 21547374 [TBL] [Abstract][Full Text] [Related]
52. Lower methane emissions were associated with higher abundance of ruminal Prevotella in a cohort of Colombian buffalos. Aguilar-Marin SB; Betancur-Murillo CL; Isaza GA; Mesa H; Jovel J BMC Microbiol; 2020 Nov; 20(1):364. PubMed ID: 33246412 [TBL] [Abstract][Full Text] [Related]
53. Chemical markers for rumen methanogens and methanogenesis. McCartney CA; Bull ID; Dewhurst RJ Animal; 2013 Jun; 7 Suppl 2():409-17. PubMed ID: 23739482 [TBL] [Abstract][Full Text] [Related]
54. Review: Ruminal microbiome and microbial metabolome: effects of diet and ruminant host. Newbold CJ; Ramos-Morales E Animal; 2020 Mar; 14(S1):s78-s86. PubMed ID: 32024572 [TBL] [Abstract][Full Text] [Related]
55. Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants. Islam M; Lee SS J Anim Sci Technol; 2019 May; 61(3):122-137. PubMed ID: 31333869 [TBL] [Abstract][Full Text] [Related]
56. Strategies to reduce methane emissions from farmed ruminants grazing on pasture. Buddle BM; Denis M; Attwood GT; Altermann E; Janssen PH; Ronimus RS; Pinares-Patiño CS; Muetzel S; Neil Wedlock D Vet J; 2011 Apr; 188(1):11-7. PubMed ID: 20347354 [TBL] [Abstract][Full Text] [Related]
57. Developing a conceptual model of possible benefits of condensed tannins for ruminant production. Tedeschi LO; Ramírez-Restrepo CA; Muir JP Animal; 2014 Jul; 8(7):1095-105. PubMed ID: 24784919 [TBL] [Abstract][Full Text] [Related]
58. Current available strategies to mitigate greenhouse gas emissions in livestock systems: an animal welfare perspective. Llonch P; Haskell MJ; Dewhurst RJ; Turner SP Animal; 2017 Feb; 11(2):274-284. PubMed ID: 27406001 [TBL] [Abstract][Full Text] [Related]
59. Age-Related Response of Rumen Microbiota to Mineral Salt and Effects of Their Interactions on Enteric Methane Emissions in Cattle. Liu C; Li XH; Chen YX; Cheng ZH; Duan QH; Meng QH; Tao XP; Shang B; Dong HM Microb Ecol; 2017 Apr; 73(3):590-601. PubMed ID: 27924402 [TBL] [Abstract][Full Text] [Related]
60. Effect of progressive inoculation of fauna-free sheep with holotrich protozoa and total-fauna on rumen fermentation, microbial diversity and methane emissions. Belanche A; de la Fuente G; Newbold CJ FEMS Microbiol Ecol; 2015 Mar; 91(3):. PubMed ID: 25764558 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]