These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 35359987)

  • 1. Cutting-Edge Technologies for Inflamed Joints on Chip: How Close Are We?
    Kahraman E; Ribeiro R; Lamghari M; Neto E
    Front Immunol; 2022; 13():802440. PubMed ID: 35359987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro Human Joint Models Combining Advanced 3D Cell Culture and Cutting-Edge 3D Bioprinting Technologies.
    Jorgensen C; Simon M
    Cells; 2021 Mar; 10(3):. PubMed ID: 33800436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Bioprinting for Cartilage and Osteochondral Tissue Engineering.
    Daly AC; Freeman FE; Gonzalez-Fernandez T; Critchley SE; Nulty J; Kelly DJ
    Adv Healthc Mater; 2017 Nov; 6(22):. PubMed ID: 28804984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progress in 3D Bioprinting Technology for Osteochondral Regeneration.
    Lafuente-Merchan M; Ruiz-Alonso S; García-Villén F; Gallego I; Gálvez-Martín P; Saenz-Del-Burgo L; Pedraz JL
    Pharmaceutics; 2022 Jul; 14(8):. PubMed ID: 36015207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioprinting of biomimetic self-organised cartilage with a supporting joint fixation device.
    Burdis R; Chariyev-Prinz F; Kelly DJ
    Biofabrication; 2021 Nov; 14(1):. PubMed ID: 34825656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors.
    Zhang J; Wehrle E; Rubert M; Müller R
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33921417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering.
    Shi W; Fang F; Kong Y; Greer SE; Kuss M; Liu B; Xue W; Jiang X; Lovell P; Mohs AM; Dudley AT; Li T; Duan B
    Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34905737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overcoming the Dependence on Animal Models for Osteoarthritis Therapeutics - The Promises and Prospects of In Vitro Models.
    Singh YP; Moses JC; Bhardwaj N; Mandal BB
    Adv Healthc Mater; 2021 Oct; 10(20):e2100961. PubMed ID: 34302436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cartilage Tissue Engineering Using Stem Cells and Bioprinting Technology-Barriers to Clinical Translation.
    Francis SL; Di Bella C; Wallace GG; Choong PFM
    Front Surg; 2018; 5():70. PubMed ID: 30547034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Bioprinting and Its Application to Military Medicine.
    Betz JF; Ho VB; Gaston JD
    Mil Med; 2020 Sep; 185(9-10):e1510-e1519. PubMed ID: 32514549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methacrylated Cartilage ECM-Based Hydrogels as Injectables and Bioinks for Cartilage Tissue Engineering.
    Behan K; Dufour A; Garcia O; Kelly D
    Biomolecules; 2022 Jan; 12(2):. PubMed ID: 35204718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in organ-on-a-chip systems for modelling joint tissue and osteoarthritic diseases.
    Banh L; Cheung KK; Chan MWY; Young EWK; Viswanathan S
    Osteoarthritis Cartilage; 2022 Aug; 30(8):1050-1061. PubMed ID: 35460872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.
    Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R
    Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in 3D bioprinting of musculoskeletal tissues.
    Potyondy T; Uquillas JA; Tebon PJ; Byambaa B; Hasan A; Tavafoghi M; Mary H; Aninwene GE; Pountos I; Khademhosseini A; Ashammakhi N
    Biofabrication; 2021 Mar; 13(2):. PubMed ID: 33166949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embedded bioprinting for designer 3D tissue constructs with complex structural organization.
    Zeng X; Meng Z; He J; Mao M; Li X; Chen P; Fan J; Li D
    Acta Biomater; 2022 Mar; 140():1-22. PubMed ID: 34875360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From intricate to integrated: Biofabrication of articulating joints.
    Groen WM; Diloksumpan P; van Weeren PR; Levato R; Malda J
    J Orthop Res; 2017 Oct; 35(10):2089-2097. PubMed ID: 28621834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering.
    Bandyopadhyay A; Mandal BB; Bhardwaj N
    J Biomed Mater Res A; 2022 Apr; 110(4):884-898. PubMed ID: 34913587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioprinting of 3D Tissue Models Using Decellularized Extracellular Matrix Bioink.
    Pati F; Cho DW
    Methods Mol Biol; 2017; 1612():381-390. PubMed ID: 28634957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current Advances in 3D Bioprinting for Cancer Modeling and Personalized Medicine.
    Germain N; Dhayer M; Dekiouk S; Marchetti P
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.