These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 35360051)
1. Computational Mechanism of Methyl Levulinate Conversion to γ-Valerolactone on UiO-66 Metal Organic Frameworks. Ortuño MA; Rellán-Piñeiro M; Luque R ACS Sustain Chem Eng; 2022 Mar; 10(11):3567-3573. PubMed ID: 35360051 [TBL] [Abstract][Full Text] [Related]
2. Combined DFT and Kinetic Monte Carlo Study of UiO-66 Catalysts for γ-Valerolactone Production. Le TT; Ferro-Costas D; Fernández-Ramos A; Ortuño MA J Phys Chem C Nanomater Interfaces; 2024 Jan; 128(3):1049-1057. PubMed ID: 38293690 [TBL] [Abstract][Full Text] [Related]
3. Water-Tolerant DUT-Series Metal-Organic Frameworks: A Theoretical-Experimental Study for the Chemical Fixation of CO Kurisingal JF; Rachuri Y; Palakkal AS; Pillai RS; Gu Y; Choe Y; Park DW ACS Appl Mater Interfaces; 2019 Nov; 11(44):41458-41471. PubMed ID: 31613085 [TBL] [Abstract][Full Text] [Related]
4. Enhancing the conversion of ethyl levulinate to γ-valerolactone over Ru/UiO-66 by introducing sulfonic groups into the framework. Yang J; Huang W; Liu Y; Zhou T RSC Adv; 2018 May; 8(30):16611-16618. PubMed ID: 35540507 [TBL] [Abstract][Full Text] [Related]
5. Water-born zirconium-based metal organic frameworks as green and effective catalysts for catalytic transfer hydrogenation of levulinic acid to γ-valerolactone: Critical roles of modulators. Yun WC; Yang MT; Lin KA J Colloid Interface Sci; 2019 May; 543():52-63. PubMed ID: 30779993 [TBL] [Abstract][Full Text] [Related]
6. Synergistic Catalysis of Ruthenium Nanoparticles and Polyoxometalate Integrated Within Single UiO-66 Microcrystals for Boosting the Efficiency of Methyl Levulinate to γ-Valerolactone. Cai X; Xu Q; Tu G; Fu Y; Zhang F; Zhu W Front Chem; 2019; 7():42. PubMed ID: 30775365 [TBL] [Abstract][Full Text] [Related]
7. Density Functional Investigation of the Conversion of Furfural to Furfuryl Alcohol by Reaction with Sittiwong J; Boonmark S; Nunthakitgoson W; Maihom T; Wattanakit C; Limtrakul J Inorg Chem; 2021 Apr; 60(7):4860-4868. PubMed ID: 33764784 [TBL] [Abstract][Full Text] [Related]
8. Probing the mechanism of the conversion of methyl levulinate into γ-valerolactone catalyzed by Al(OiPr) Ju Z; Feng S; Ren L; Lei T; Cheng H; Yu M; Ge C RSC Adv; 2022 Jan; 12(5):2788-2797. PubMed ID: 35425337 [TBL] [Abstract][Full Text] [Related]
9. Transforming CO Yang K; Jiang J ACS Appl Mater Interfaces; 2021 Dec; 13(49):58723-58736. PubMed ID: 34846838 [TBL] [Abstract][Full Text] [Related]
10. Surface-sealing encapsulation of phosphotungstic acid in microporous UiO-66 as a bifunctional catalyst for transfer hydrogenation of levulinic acid to γ-valerolactone. Tan H; Rong S; Zong Z; Zhang P; Zhao R; Song F; Cui H; Chen ZN; Yi W; Zhang F Phys Chem Chem Phys; 2023 Jul; 25(27):18215-18223. PubMed ID: 37394949 [TBL] [Abstract][Full Text] [Related]
11. Catalytic Transfer Hydrogenation of Biomass-Derived Carbonyls over Hafnium-Based Metal-Organic Frameworks. Rojas-Buzo S; García-García P; Corma A ChemSusChem; 2018 Jan; 11(2):432-438. PubMed ID: 29139603 [TBL] [Abstract][Full Text] [Related]
12. In Situ Catalytic Hydrogenation of Biomass-Derived Methyl Levulinate to γ-Valerolactone in Methanol. Tang X; Li Z; Zeng X; Jiang Y; Liu S; Lei T; Sun Y; Lin L ChemSusChem; 2015 May; 8(9):1601-7. PubMed ID: 25873556 [TBL] [Abstract][Full Text] [Related]
13. Influence of Defects and H Gutterød ES; Pulumati SH; Kaur G; Lazzarini A; Solemsli BG; Gunnæs AE; Ahoba-Sam C; Kalyva ME; Sannes JA; Svelle S; Skúlason E; Nova A; Olsbye U J Am Chem Soc; 2020 Oct; 142(40):17105-17118. PubMed ID: 32902970 [TBL] [Abstract][Full Text] [Related]
14. Interplay of Lewis and Brønsted Acid Sites in Zr-Based Metal-Organic Frameworks for Efficient Esterification of Biomass-Derived Levulinic Acid. Wang F; Chen Z; Chen H; Goetjen TA; Li P; Wang X; Alayoglu S; Ma K; Chen Y; Wang T; Islamoglu T; Fang Y; Snurr RQ; Farha OK ACS Appl Mater Interfaces; 2019 Sep; 11(35):32090-32096. PubMed ID: 31441295 [TBL] [Abstract][Full Text] [Related]
15. Defect-Rich Hierarchical Porous UiO-66(Zr) for Tunable Phosphate Removal. Li M; Liu Y; Li F; Shen C; Kaneti YV; Yamauchi Y; Yuliarto B; Chen B; Wang CC Environ Sci Technol; 2021 Oct; 55(19):13209-13218. PubMed ID: 34553909 [TBL] [Abstract][Full Text] [Related]
16. Efficient Conversion of Biomass-Derived Levulinic Acid to γ-Valerolactone over Polyoxometalate@Zr-Based Metal-Organic Frameworks: The Synergistic Effect of Bro̷nsted and Lewis Acidic Sites. Li J; Zhao S; Li Z; Liu D; Chi Y; Hu C Inorg Chem; 2021 Jun; 60(11):7785-7793. PubMed ID: 33755456 [TBL] [Abstract][Full Text] [Related]
17. Porous Ti/Zr Microspheres for Efficient Transfer Hydrogenation of Biobased Ethyl Levulinate to γ-Valerolactone. Yang T; Li H; He J; Liu Y; Zhao W; Wang Z; Ji X; Yang S ACS Omega; 2017 Mar; 2(3):1047-1054. PubMed ID: 31457487 [TBL] [Abstract][Full Text] [Related]
18. Zr-Metal-Organic Frameworks Featuring TEMPO Radicals: Synergistic Effect between TEMPO and Hydrophilic Zr-Node Defects Boosting Aerobic Oxidation of Alcohols. Zhuang JL; Liu XY; Zhang Y; Wang C; Mao HL; Guo J; Du X; Zhu SB; Ren B; Terfort A ACS Appl Mater Interfaces; 2019 Jan; 11(3):3034-3043. PubMed ID: 30585485 [TBL] [Abstract][Full Text] [Related]
19. The role of leached Zr in the photocatalytic reduction of CO Bhattacharya M; Chandler KJ; Geary J; Saouma CT Dalton Trans; 2020 Apr; 49(15):4751-4757. PubMed ID: 32211670 [TBL] [Abstract][Full Text] [Related]
20. Tuning the Surface Chemistry of Metal Organic Framework Nodes: Proton Topology of the Metal-Oxide-Like Zr Yang D; Bernales V; Islamoglu T; Farha OK; Hupp JT; Cramer CJ; Gagliardi L; Gates BC J Am Chem Soc; 2016 Nov; 138(46):15189-15196. PubMed ID: 27792873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]