These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35360138)

  • 1. An End-to-End Depression Recognition Method Based on EEGNet.
    Liu B; Chang H; Peng K; Wang X
    Front Psychiatry; 2022; 13():864393. PubMed ID: 35360138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Major depressive disorder diagnosis based on effective connectivity in EEG signals: a convolutional neural network and long short-term memory approach.
    Saeedi A; Saeedi M; Maghsoudi A; Shalbaf A
    Cogn Neurodyn; 2021 Apr; 15(2):239-252. PubMed ID: 33854642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated detection of clinical depression based on convolution neural network model.
    Yan DD; Zhao LL; Song XW; Zang XH; Yang LC
    Biomed Tech (Berl); 2022 Apr; 67(2):131-142. PubMed ID: 35142145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A major depressive disorder classification framework based on EEG signals using statistical, spectral, wavelet, functional connectivity, and nonlinear analysis.
    Movahed RA; Jahromi GP; Shahyad S; Meftahi GH
    J Neurosci Methods; 2021 Jul; 358():109209. PubMed ID: 33957158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A major depressive disorder diagnosis approach based on EEG signals using dictionary learning and functional connectivity features.
    Movahed RA; Jahromi GP; Shahyad S; Meftahi GH
    Phys Eng Sci Med; 2022 Sep; 45(3):705-719. PubMed ID: 35635612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep learning framework for automatic diagnosis of unipolar depression.
    Mumtaz W; Qayyum A
    Int J Med Inform; 2019 Dec; 132():103983. PubMed ID: 31586827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
    Lawhern VJ; Solon AJ; Waytowich NR; Gordon SM; Hung CP; Lance BJ
    J Neural Eng; 2018 Oct; 15(5):056013. PubMed ID: 29932424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated Depression Detection Using Deep Representation and Sequence Learning with EEG Signals.
    Ay B; Yildirim O; Talo M; Baloglu UB; Aydin G; Puthankattil SD; Acharya UR
    J Med Syst; 2019 May; 43(7):205. PubMed ID: 31139932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Multibranch of Convolutional Neural Network Models for Electroencephalogram-Based Motor Imagery Classification.
    Altuwaijri GA; Muhammad G
    Biosensors (Basel); 2022 Jan; 12(1):. PubMed ID: 35049650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A machine learning framework involving EEG-based functional connectivity to diagnose major depressive disorder (MDD).
    Mumtaz W; Ali SSA; Yasin MAM; Malik AS
    Med Biol Eng Comput; 2018 Feb; 56(2):233-246. PubMed ID: 28702811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated accurate emotion recognition system using rhythm-specific deep convolutional neural network technique with multi-channel EEG signals.
    Maheshwari D; Ghosh SK; Tripathy RK; Sharma M; Acharya UR
    Comput Biol Med; 2021 Jul; 134():104428. PubMed ID: 33984749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated EEG-based screening of depression using deep convolutional neural network.
    Acharya UR; Oh SL; Hagiwara Y; Tan JH; Adeli H; Subha DP
    Comput Methods Programs Biomed; 2018 Jul; 161():103-113. PubMed ID: 29852953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Major Depressive Disorder Classification Based on Different Convolutional Neural Network Models: Deep Learning Approach.
    Uyulan C; Ergüzel TT; Unubol H; Cebi M; Sayar GH; Nezhad Asad M; Tarhan N
    Clin EEG Neurosci; 2021 Jan; 52(1):38-51. PubMed ID: 32491928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG-based major depressive disorder recognition by selecting discriminative features via stochastic search.
    Chang H; Zong Y; Zheng W; Xiao Y; Wang X; Zhu J; Shi M; Lu C; Yang H
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36812637
    [No Abstract]   [Full Text] [Related]  

  • 15. SparNet: A Convolutional Neural Network for EEG Space-Frequency Feature Learning and Depression Discrimination.
    Deng X; Fan X; Lv X; Sun K
    Front Neuroinform; 2022; 16():914823. PubMed ID: 35722169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classifying major depression patients and healthy controls using EEG, eye tracking and galvanic skin response data.
    Ding X; Yue X; Zheng R; Bi C; Li D; Yao G
    J Affect Disord; 2019 May; 251():156-161. PubMed ID: 30925266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic Depression Detection Using Smartphone-Based Text-Dependent Speech Signals: Deep Convolutional Neural Network Approach.
    Kim AY; Jang EH; Lee SH; Choi KY; Park JG; Shin HC
    J Med Internet Res; 2023 Jan; 25():e34474. PubMed ID: 36696160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Correlation-Driven Mapping For Deep Learning application in detecting artifacts within the EEG.
    Bahador N; Erikson K; Laurila J; Koskenkari J; Ala-Kokko T; Kortelainen J
    J Neural Eng; 2020 Oct; 17(5):056018. PubMed ID: 33055380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A gradient-based automatic optimization CNN framework for EEG state recognition.
    Wang H; Zhu X; Chen P; Yang Y; Ma C; Gao Z
    J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34883472
    [No Abstract]   [Full Text] [Related]  

  • 20. Deep Convolutional Neural Network-Based Visual Stimuli Classification Using Electroencephalography Signals of Healthy and Alzheimer's Disease Subjects.
    Komolovaitė D; Maskeliūnas R; Damaševičius R
    Life (Basel); 2022 Mar; 12(3):. PubMed ID: 35330125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.