These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 35360179)
1. Real-Time Control of a Multi-Degree-of-Freedom Mirror Myoelectric Interface During Functional Task Training. Sarasola-Sanz A; López-Larraz E; Irastorza-Landa N; Rossi G; Figueiredo T; McIntyre J; Ramos-Murguialday A Front Neurosci; 2022; 16():764936. PubMed ID: 35360179 [TBL] [Abstract][Full Text] [Related]
2. A hybrid brain-muscle-machine interface for stroke rehabilitation: Usability and functionality validation in a 2-week intensive intervention. Sarasola-Sanz A; Ray AM; Insausti-Delgado A; Irastorza-Landa N; Mahmoud WJ; Brötz D; Bibián-Nogueras C; Helmhold F; Zrenner C; Ziemann U; López-Larraz E; Ramos-Murguialday A Front Bioeng Biotechnol; 2024; 12():1330330. PubMed ID: 38681960 [No Abstract] [Full Text] [Related]
3. Design and effectiveness evaluation of mirror myoelectric interfaces: a novel method to restore movement in hemiplegic patients. Sarasola-Sanz A; Irastorza-Landa N; López-Larraz E; Shiman F; Spüler M; Birbaumer N; Ramos-Murguialday A Sci Rep; 2018 Nov; 8(1):16688. PubMed ID: 30420779 [TBL] [Abstract][Full Text] [Related]
4. The development of a myoelectric training tool for above-elbow amputees. Dawson MR; Fahimi F; Carey JP Open Biomed Eng J; 2012; 6():5-15. PubMed ID: 22383905 [TBL] [Abstract][Full Text] [Related]
5. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines. Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511 [TBL] [Abstract][Full Text] [Related]
6. A Myoelectric Control Interface for Upper-Limb Robotic Rehabilitation Following Spinal Cord Injury. McDonald CG; Sullivan JL; Dennis TA; O'Malley MK IEEE Trans Neural Syst Rehabil Eng; 2020 Apr; 28(4):978-987. PubMed ID: 32167899 [TBL] [Abstract][Full Text] [Related]
7. Myoelectric Control Systems for Upper Limb Wearable Robotic Exoskeletons and Exosuits-A Systematic Review. Fu J; Choudhury R; Hosseini SM; Simpson R; Park JH Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365832 [TBL] [Abstract][Full Text] [Related]
8. Two degrees of freedom quasi-static EMG-force at the wrist using a minimum number of electrodes. Clancy EA; Martinez-Luna C; Wartenberg M; Dai C; Farrell TR J Electromyogr Kinesiol; 2017 Jun; 34():24-36. PubMed ID: 28384495 [TBL] [Abstract][Full Text] [Related]
9. Hybrid Neuroprosthesis for the Upper Limb: Combining Brain-Controlled Neuromuscular Stimulation with a Multi-Joint Arm Exoskeleton. Grimm F; Walter A; Spüler M; Naros G; Rosenstiel W; Gharabaghi A Front Neurosci; 2016; 10():367. PubMed ID: 27555805 [TBL] [Abstract][Full Text] [Related]
10. Design of continuous EMG classification approaches towards the control of a robotic exoskeleton in reaching movements. Irastorza-Landa N; Sarasola-Sanz A; Lopez-Larraz E; Bibian C; Shiman P; Birbaumer N; Ramos-Murguialday A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():128-133. PubMed ID: 28813806 [TBL] [Abstract][Full Text] [Related]
11. Real-time simultaneous and proportional myoelectric control using intramuscular EMG. Smith LH; Kuiken TA; Hargrove LJ J Neural Eng; 2014 Dec; 11(6):066013. PubMed ID: 25394366 [TBL] [Abstract][Full Text] [Related]
12. Myoelectrically controlled wrist robot for stroke rehabilitation. Song R; Tong KY; Hu X; Zhou W J Neuroeng Rehabil; 2013 Jun; 10():52. PubMed ID: 23758925 [TBL] [Abstract][Full Text] [Related]
13. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton. Proietti T; Guigon E; Roby-Brami A; Jarrassé N J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179 [TBL] [Abstract][Full Text] [Related]
14. Closed-Loop Multi-Amplitude Control for Robust and Dexterous Performance of Myoelectric Prosthesis. Markovic M; Varel M; Schweisfurth MA; Schilling AF; Dosen S IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):498-507. PubMed ID: 31841418 [TBL] [Abstract][Full Text] [Related]
15. Real-time myoelectric control of a multi-fingered hand prosthesis using principal components analysis. Matrone GC; Cipriani C; Carrozza MC; Magenes G J Neuroeng Rehabil; 2012 Jun; 9():40. PubMed ID: 22703711 [TBL] [Abstract][Full Text] [Related]
17. Myoelectric control and virtual reality to enhance motor rehabilitation after stroke. Berger DJ; d'Avella A Front Bioeng Biotechnol; 2024; 12():1376000. PubMed ID: 38665814 [TBL] [Abstract][Full Text] [Related]