These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 35360179)
21. Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation. Brauchle D; Vukelić M; Bauer R; Gharabaghi A Front Hum Neurosci; 2015; 9():564. PubMed ID: 26528168 [TBL] [Abstract][Full Text] [Related]
22. Musculoskeletal model-based control interface mimics physiologic hand dynamics during path tracing task. Crouch DL; Huang HH J Neural Eng; 2017 Jun; 14(3):036008. PubMed ID: 28220759 [TBL] [Abstract][Full Text] [Related]
23. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control. Resnik L; Huang HH; Winslow A; Crouch DL; Zhang F; Wolk N J Neuroeng Rehabil; 2018 Mar; 15(1):23. PubMed ID: 29544501 [TBL] [Abstract][Full Text] [Related]
24. Delaying feedback during pre-device training facilitates the retention of novel myoelectric skills: a laboratory and home-based study. Stuttaford SA; Dupan SSG; Nazarpour K; Dyson M J Neural Eng; 2023 May; 20(3):. PubMed ID: 36928264 [No Abstract] [Full Text] [Related]
25. Characterization of surface electromyography patterns of healthy and incomplete spinal cord injury subjects interacting with an upper-extremity exoskeleton. McDonald CG; Dennis TA; O'Malley MK IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():164-169. PubMed ID: 28813812 [TBL] [Abstract][Full Text] [Related]
26. Real-time myoelectric control of wrist/hand motion in Duchenne muscular dystrophy: A case study. Nizamis K; Ayvaz A; Rijken NHM; Koopman BFJM; Sartori M Front Robot AI; 2023; 10():1100411. PubMed ID: 37090893 [No Abstract] [Full Text] [Related]
27. A hybrid brain-machine interface based on EEG and EMG activity for the motor rehabilitation of stroke patients. Sarasola-Sanz A; Irastorza-Landa N; Lopez-Larraz E; Bibian C; Helmhold F; Broetz D; Birbaumer N; Ramos-Murguialday A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():895-900. PubMed ID: 28813934 [TBL] [Abstract][Full Text] [Related]
28. A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements. Young AJ; Smith LH; Rouse EJ; Hargrove LJ J Neuroeng Rehabil; 2014 Jan; 11():5. PubMed ID: 24410948 [TBL] [Abstract][Full Text] [Related]
29. Closed-Loop Task Difficulty Adaptation during Virtual Reality Reach-to-Grasp Training Assisted with an Exoskeleton for Stroke Rehabilitation. Grimm F; Naros G; Gharabaghi A Front Neurosci; 2016; 10():518. PubMed ID: 27895550 [TBL] [Abstract][Full Text] [Related]
30. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients. Daly JJ; Ruff RL ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618 [TBL] [Abstract][Full Text] [Related]
31. A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES. Milot MH; Spencer SJ; Chan V; Allington JP; Klein J; Chou C; Bobrow JE; Cramer SC; Reinkensmeyer DJ J Neuroeng Rehabil; 2013 Dec; 10():112. PubMed ID: 24354476 [TBL] [Abstract][Full Text] [Related]
32. Virtual regression-based myoelectric hand-wrist prosthesis control and electrode site selection using no force feedback. Li J; Zhu Z; Boyd WJ; Martinez-Luna C; Dai C; Wang H; Wang H; Huang X; Farrell TR; Clancy EA Biomed Signal Process Control; 2023 Apr; 82():. PubMed ID: 36875964 [TBL] [Abstract][Full Text] [Related]
33. Motor unit drive: a neural interface for real-time upper limb prosthetic control. Twardowski MD; Roy SH; Li Z; Contessa P; De Luca G; Kline JC J Neural Eng; 2019 Feb; 16(1):016012. PubMed ID: 30524105 [TBL] [Abstract][Full Text] [Related]
34. Distal versus proximal - an investigation on different supportive strategies by robots for upper limb rehabilitation after stroke: a randomized controlled trial. Qian Q; Nam C; Guo Z; Huang Y; Hu X; Ng SC; Zheng Y; Poon W J Neuroeng Rehabil; 2019 Jun; 16(1):64. PubMed ID: 31159822 [TBL] [Abstract][Full Text] [Related]
35. Evidence of neuroplasticity with robotic hand exoskeleton for post-stroke rehabilitation: a randomized controlled trial. Singh N; Saini M; Kumar N; Srivastava MVP; Mehndiratta A J Neuroeng Rehabil; 2021 May; 18(1):76. PubMed ID: 33957937 [TBL] [Abstract][Full Text] [Related]
36. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves. Wendelken S; Page DM; Davis T; Wark HAC; Kluger DT; Duncan C; Warren DJ; Hutchinson DT; Clark GA J Neuroeng Rehabil; 2017 Nov; 14(1):121. PubMed ID: 29178940 [TBL] [Abstract][Full Text] [Related]
37. A Reliable Multi-User EMG Interface Based on A Generic-Musculoskeletal Model against Loading Weight Changes Pan L; Harmody A; Huang H Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2104-2107. PubMed ID: 30440818 [TBL] [Abstract][Full Text] [Related]
38. Myoelectric Control of a Soft Hand Exoskeleton Using Kinematic Synergies. Burns MK; Pei D; Vinjamuri R IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1351-1361. PubMed ID: 31670679 [TBL] [Abstract][Full Text] [Related]
39. Compensation or Restoration: Closed-Loop Feedback of Movement Quality for Assisted Reach-to-Grasp Exercises with a Multi-Joint Arm Exoskeleton. Grimm F; Naros G; Gharabaghi A Front Neurosci; 2016; 10():280. PubMed ID: 27445655 [TBL] [Abstract][Full Text] [Related]
40. Learning to control opening and closing a myoelectric hand. Bouwsema H; van der Sluis CK; Bongers RM Arch Phys Med Rehabil; 2010 Sep; 91(9):1442-6. PubMed ID: 20801265 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]