BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 35360182)

  • 1. Liquid State Machine on SpiNNaker for Spatio-Temporal Classification Tasks.
    Patiño-Saucedo A; Rostro-González H; Serrano-Gotarredona T; Linares-Barranco B
    Front Neurosci; 2022; 16():819063. PubMed ID: 35360182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
    Chunduri RK; Perera DG
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ALBSNN: ultra-low latency adaptive local binary spiking neural network with accuracy loss estimator.
    Pei Y; Xu C; Wu Z; Liu Y; Yang Y
    Front Neurosci; 2023; 17():1225871. PubMed ID: 37771337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. sPyNNaker: A Software Package for Running PyNN Simulations on SpiNNaker.
    Rhodes O; Bogdan PA; Brenninkmeijer C; Davidson S; Fellows D; Gait A; Lester DR; Mikaitis M; Plana LA; Rowley AGD; Stokes AB; Furber SB
    Front Neurosci; 2018; 12():816. PubMed ID: 30524220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing Neuromorphic Solutions in Action: Implementing a Bio-Inspired Solution to a Benchmark Classification Task on Three Parallel-Computing Platforms.
    Diamond A; Nowotny T; Schmuker M
    Front Neurosci; 2015; 9():491. PubMed ID: 26778950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is Neuromorphic MNIST Neuromorphic? Analyzing the Discriminative Power of Neuromorphic Datasets in the Time Domain.
    Iyer LR; Chua Y; Li H
    Front Neurosci; 2021; 15():608567. PubMed ID: 33841072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. STCA-SNN: self-attention-based temporal-channel joint attention for spiking neural networks.
    Wu X; Song Y; Zhou Y; Jiang Y; Bai Y; Li X; Yang X
    Front Neurosci; 2023; 17():1261543. PubMed ID: 38027490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spiking neural networks for computer vision.
    Hopkins M; Pineda-García G; Bogdan PA; Furber SB
    Interface Focus; 2018 Aug; 8(4):20180007. PubMed ID: 29951187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic Plasticity Dynamics for Deep Continuous Local Learning (DECOLLE).
    Kaiser J; Mostafa H; Neftci E
    Front Neurosci; 2020; 14():424. PubMed ID: 32477050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking Spike-Based Visual Recognition: A Dataset and Evaluation.
    Liu Q; Pineda-García G; Stromatias E; Serrano-Gotarredona T; Furber SB
    Front Neurosci; 2016; 10():496. PubMed ID: 27853419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Information bottleneck-based Hebbian learning rule naturally ties working memory and synaptic updates.
    Daruwalla K; Lipasti M
    Front Comput Neurosci; 2024; 18():1240348. PubMed ID: 38818385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Spiking Neural Network Model of the Lateral Geniculate Nucleus on the SpiNNaker Machine.
    Sen-Bhattacharya B; Serrano-Gotarredona T; Balassa L; Bhattacharya A; Stokes AB; Rowley A; Sugiarto I; Furber S
    Front Neurosci; 2017; 11():454. PubMed ID: 28848380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines.
    Neftci EO; Augustine C; Paul S; Detorakis G
    Front Neurosci; 2017; 11():324. PubMed ID: 28680387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Liquid Ensembles for Enhancing the Performance and Accuracy of Liquid State Machines.
    Wijesinghe P; Srinivasan G; Panda P; Roy K
    Front Neurosci; 2019; 13():504. PubMed ID: 31191219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural and Synaptic Array Transceiver: A Brain-Inspired Computing Framework for Embedded Learning.
    Detorakis G; Sheik S; Augustine C; Paul S; Pedroni BU; Dutt N; Krichmar J; Cauwenberghs G; Neftci E
    Front Neurosci; 2018; 12():583. PubMed ID: 30210274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesizing Images From Spatio-Temporal Representations Using Spike-Based Backpropagation.
    Roy D; Panda P; Roy K
    Front Neurosci; 2019; 13():621. PubMed ID: 31316331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Event-driven contrastive divergence for spiking neuromorphic systems.
    Neftci E; Das S; Pedroni B; Kreutz-Delgado K; Cauwenberghs G
    Front Neurosci; 2013; 7():272. PubMed ID: 24574952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A framework for plasticity implementation on the SpiNNaker neural architecture.
    Galluppi F; Lagorce X; Stromatias E; Pfeiffer M; Plana LA; Furber SB; Benosman RB
    Front Neurosci; 2014; 8():429. PubMed ID: 25653580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Online Spatio-Temporal Learning in Deep Neural Networks.
    Bohnstingl T; Wozniak S; Pantazi A; Eleftheriou E
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):8894-8908. PubMed ID: 35294357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully neuromorphic vision and control for autonomous drone flight.
    Paredes-Vallés F; Hagenaars JJ; Dupeyroux J; Stroobants S; Xu Y; de Croon GCHE
    Sci Robot; 2024 May; 9(90):eadi0591. PubMed ID: 38748781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.