These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 35360243)

  • 1. Molecular Events of the Crossbridge Cycle Reflected in the Force-Velocity Relationship of Activated Muscle.
    Seow KN; Seow CY
    Front Physiol; 2022; 13():846284. PubMed ID: 35360243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A weakly coupled version of the Huxley crossbridge model can simulate energetics of amphibian and mammalian skeletal muscle.
    Barclay CJ
    J Muscle Res Cell Motil; 1999 Feb; 20(2):163-76. PubMed ID: 10412088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Mouse Soleus Muscle Contraction.
    Palladino JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2311-2314. PubMed ID: 33018470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional differences of energetics, mechanics, and kinetics of myosin cross-bridge in human ureter smooth muscle.
    Vargiu R; Perinu A; Tintrup F; Broccia F; Lisa AD
    Int J Physiol Pathophysiol Pharmacol; 2015; 7(1):34-43. PubMed ID: 26069527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The endothermic ATP hydrolysis and crossbridge attachment steps drive the increase of force with temperature in isometric and shortening muscle.
    Offer G; Ranatunga KW
    J Physiol; 2015 Apr; 593(8):1997-2016. PubMed ID: 25564737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth hormone excess and sternohyoid muscle mechanics in rats.
    Attal P; Claes V; Bobin S; Chanson P; Kamenicky P; Zizzari P; Lecarpentier Y
    Eur Respir J; 2009 Oct; 34(4):967-74. PubMed ID: 19357144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the cardiac force-time integral with energetics using a cardiac muscle model.
    Taylor TW; Goto Y; Hata K; Takasago T; Saeki A; Nishioka T; Suga H
    J Biomech; 1993 Oct; 26(10):1217-25. PubMed ID: 8253826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal shortening velocity (V/Vmax) of skeletal muscle during cyclical contractions: length-force effects and velocity-dependent activation and deactivation.
    Askew GN; Marsh RL
    J Exp Biol; 1998 May; 201(Pt 10):1527-40. PubMed ID: 9556536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Requirements of a Mathematical Model of Muscle Contraction.
    Palladino JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6956-6959. PubMed ID: 31947439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of crossbridge compliance on the force-velocity relation of muscle.
    Grood ES; Mates RE
    Am J Physiol; 1975 Jan; 228(1):244-9. PubMed ID: 1147017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable crossbridge cycling-ATP coupling accounts for cardiac mechanoenergetics.
    Taylor TW; Suga H
    Adv Exp Med Biol; 1993; 332():775-82; discussion 782-3. PubMed ID: 8109387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanics and crossbridge kinetics of tracheal smooth muscle in two inbred rat strains.
    Blanc FX; Coirault C; Salmeron S; Chemla D; Lecarpentier Y
    Eur Respir J; 2003 Aug; 22(2):227-34. PubMed ID: 12952252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of shortening velocity, power, and acto-myosin crossbridge (CB) kinetics following long-term treatment with propionyl-L-carnitine, coenzyme Q10, and omega-3 fatty acids in BIO TO-2 cardiomyopathic Syrian hamsters papillary muscle.
    Vargiu R; Littarru GP; Fraschini M; Perinu A; Tiano L; Capra A; Mancinelli R
    Biofactors; 2010; 36(3):229-39. PubMed ID: 20533397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature dependence of the crossbridge cycle during unloaded shortening and maximum isometric tetanus in frog skeletal muscle.
    Burchfield DM; Rall JA
    J Muscle Res Cell Motil; 1986 Aug; 7(4):320-6. PubMed ID: 3489733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The load dependence of muscle's force-velocity curve is modulated by alternative myosin converter domains.
    Newhard CS; Walcott S; Swank DM
    Am J Physiol Cell Physiol; 2019 Jun; 316(6):C844-C861. PubMed ID: 30865518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical transients of single toad stomach smooth muscle cells. Effects of lowering temperature and extracellular calcium.
    Yamakawa M; Harris DE; Fay FS; Warshaw DM
    J Gen Physiol; 1990 Apr; 95(4):697-715. PubMed ID: 2110967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism underlying double-hyperbolic force-velocity relation in vertebrate skeletal muscle.
    Edman KA
    Adv Exp Med Biol; 1993; 332():667-76; discussion 676-8. PubMed ID: 8109377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of temperature and force requirements on muscle work and power output.
    Olberding JP; Deban SM
    J Exp Biol; 2017 Jun; 220(Pt 11):2017-2025. PubMed ID: 28314747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate increase during fatigue affects crossbridge kinetics in intact mouse muscle at physiological temperature.
    Nocella M; Cecchi G; Colombini B
    J Physiol; 2017 Jul; 595(13):4317-4328. PubMed ID: 28332714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hill's equation of muscle performance and its hidden insight on molecular mechanisms.
    Seow CY
    J Gen Physiol; 2013 Dec; 142(6):561-73. PubMed ID: 24277600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.