These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 35360245)

  • 21. Clinical Features, Immunopathogenesis, and Therapeutic Strategies in Vitiligo.
    Wang Y; Li S; Li C
    Clin Rev Allergy Immunol; 2021 Dec; 61(3):299-323. PubMed ID: 34283349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dysfunction of Autophagy: A Possible Mechanism Involved in the Pathogenesis of Vitiligo by Breaking the Redox Balance of Melanocytes.
    Qiao Z; Wang X; Xiang L; Zhang C
    Oxid Med Cell Longev; 2016; 2016():3401570. PubMed ID: 28018522
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The possible role of Wnt/β-catenin signalling in vitiligo treatment.
    Lin X; Meng X; Lin J
    J Eur Acad Dermatol Venereol; 2023 Nov; 37(11):2208-2221. PubMed ID: 36912722
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of calcipotriol on the dendritic morphology of human melanocytes under oxidative stress and a possible mechanism: is it a mitochondrial protector?
    Gong Q; Li X; Sun J; Ding G; Zhou M; Zhao W; Lu Y
    J Dermatol Sci; 2015 Feb; 77(2):117-24. PubMed ID: 25592908
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms of melanocyte death in vitiligo.
    Chen J; Li S; Li C
    Med Res Rev; 2021 Mar; 41(2):1138-1166. PubMed ID: 33200838
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Role of Oxidative Stress in Vitiligo: An Update on Its Pathogenesis and Therapeutic Implications.
    Chang WL; Ko CH
    Cells; 2023 Mar; 12(6):. PubMed ID: 36980277
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regenerative Medicine-Based Treatment for Vitiligo: An Overview.
    Bellei B; Papaccio F; Picardo M
    Biomedicines; 2022 Oct; 10(11):. PubMed ID: 36359263
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SIRT3-Dependent Mitochondrial Dynamics Remodeling Contributes to Oxidative Stress-Induced Melanocyte Degeneration in Vitiligo.
    Yi X; Guo W; Shi Q; Yang Y; Zhang W; Chen X; Kang P; Chen J; Cui T; Ma J; Wang H; Guo S; Chang Y; Liu L; Jian Z; Wang L; Xiao Q; Li S; Gao T; Li C
    Theranostics; 2019; 9(6):1614-1633. PubMed ID: 31037127
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New insight into the role of exosomes in vitiligo.
    Wong PM; Yang L; Yang L; Wu H; Li W; Ma X; Katayama I; Zhang H
    Autoimmun Rev; 2020 Nov; 19(11):102664. PubMed ID: 32942029
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the etiology of contact/occupational vitiligo.
    Boissy RE; Manga P
    Pigment Cell Res; 2004 Jun; 17(3):208-14. PubMed ID: 15140065
    [TBL] [Abstract][Full Text] [Related]  

  • 31. HSF1-Dependent Autophagy Activation Contributes to the Survival of Melanocytes Under Oxidative Stress in Vitiligo.
    Cui T; Wang Y; Song P; Yi X; Chen J; Yang Y; Wang H; Kang P; Guo S; Liu L; Li K; Jian Z; Li S; Li C
    J Invest Dermatol; 2022 Jun; 142(6):1659-1669.e4. PubMed ID: 34780715
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vitiligo and Autoimmune Thyroid Disorders.
    Baldini E; Odorisio T; Sorrenti S; Catania A; Tartaglia F; Carbotta G; Pironi D; Rendina R; D'Armiento E; Persechino S; Ulisse S
    Front Endocrinol (Lausanne); 2017; 8():290. PubMed ID: 29163360
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Role of Oxidative Stress in the Pathogenesis of Vitiligo: A Culprit for Melanocyte Death.
    Xuan Y; Yang Y; Xiang L; Zhang C
    Oxid Med Cell Longev; 2022; 2022():8498472. PubMed ID: 35103096
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Involvement of superoxide dismutase isoenzymes and their genetic variants in progression of and higher susceptibility to vitiligo.
    Laddha NC; Dwivedi M; Gani AR; Shajil EM; Begum R
    Free Radic Biol Med; 2013 Dec; 65():1110-1125. PubMed ID: 24036105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Type-1 cytokines regulate MMP-9 production and E-cadherin disruption to promote melanocyte loss in vitiligo.
    Boukhedouni N; Martins C; Darrigade AS; Drullion C; Rambert J; Barrault C; Garnier J; Jacquemin C; Thiolat D; Lucchese F; Morel F; Ezzedine K; Taieb A; Bernard FX; Seneschal J; Boniface K
    JCI Insight; 2020 Jun; 5(11):. PubMed ID: 32369451
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent advances in understanding vitiligo.
    Manga P; Elbuluk N; Orlow SJ
    F1000Res; 2016; 5():. PubMed ID: 27635239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vitiligo and Hashimoto's thyroiditis: Autoimmune diseases linked by clinical presentation, biochemical commonality, and autoimmune/oxidative stress-mediated toxicity pathogenesis.
    Li D; Liang G; Calderone R; Bellanti JA
    Med Hypotheses; 2019 Jul; 128():69-75. PubMed ID: 31203913
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Current Debates on Etiopathogenesis and Treatment Strategies for Vitiligo.
    Chaudhary A; Patel M; Singh S
    Curr Drug Targets; 2022; 23(13):1219-1238. PubMed ID: 35388753
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vitiligo Skin T Cells Are Prone to Produce Type 1 and Type 2 Cytokines to Induce Melanocyte Dysfunction and Epidermal Inflammatory Response Through Jak Signaling.
    Martins C; Migayron L; Drullion C; Jacquemin C; Lucchese F; Rambert J; Merhi R; Michon P; Taieb A; Rezvani HR; de Rinaldis E; Seneschal J; Boniface K
    J Invest Dermatol; 2022 Apr; 142(4):1194-1205.e7. PubMed ID: 34655610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Membrane lipid alterations as a possible basis for melanocyte degeneration in vitiligo.
    Dell'Anna ML; Ottaviani M; Albanesi V; Vidolin AP; Leone G; Ferraro C; Cossarizza A; Rossi L; Picardo M
    J Invest Dermatol; 2007 May; 127(5):1226-33. PubMed ID: 17235326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.