These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 35360245)

  • 41. Decreased methionine sulphoxide reductase A expression renders melanocytes more sensitive to oxidative stress: a possible cause for melanocyte loss in vitiligo.
    Zhou Z; Li CY; Li K; Wang T; Zhang B; Gao TW
    Br J Dermatol; 2009 Sep; 161(3):504-9. PubMed ID: 19558554
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cytokines: the yin and yang of vitiligo pathogenesis.
    Singh M; Kotnis A; Jadeja SD; Mondal A; Mansuri MS; Begum R
    Expert Rev Clin Immunol; 2019 Feb; 15(2):177-188. PubMed ID: 30462555
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vitiligo, reactive oxygen species and T-cells.
    Glassman SJ
    Clin Sci (Lond); 2011 Feb; 120(3):99-120. PubMed ID: 20958268
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stem Cell Therapy Offers a Possible Safe and Promising Alternative Approach for Treating Vitiligo: A Review.
    Esquivel D; Mishra R; Srivastava A
    Curr Pharm Des; 2020; 26(37):4815-4821. PubMed ID: 32744962
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Melanocytes and keratinocytes morphological changes in vitiligo patients. A histological, immunohistochemical and ultrastructural analysis.
    Elsherif R; Mahmoud WA; Mohamed RR
    Ultrastruct Pathol; 2022 Mar; 46(2):217-235. PubMed ID: 35243959
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The impaired unfolded protein-premelanosome protein and transient receptor potential channels-autophagy axes in apoptotic melanocytes in vitiligo.
    Xie B; Song X
    Pigment Cell Melanoma Res; 2022 Jan; 35(1):6-17. PubMed ID: 34333860
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vitiligo.
    Picardo M; Dell'Anna ML; Ezzedine K; Hamzavi I; Harris JE; Parsad D; Taieb A
    Nat Rev Dis Primers; 2015 Jun; 1():15011. PubMed ID: 27189851
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Vitamin D protects human melanocytes against oxidative damage by activation of Wnt/β-catenin signaling.
    Tang L; Fang W; Lin J; Li J; Wu W; Xu J
    Lab Invest; 2018 Dec; 98(12):1527-1537. PubMed ID: 30206310
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Damage-associated molecular patterns in vitiligo: igniter fuse from oxidative stress to melanocyte loss.
    Wang J; Pan Y; Wei G; Mao H; Liu R; He Y
    Redox Rep; 2022 Dec; 27(1):193-199. PubMed ID: 36154894
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ginkgo biloba extract protects human melanocytes from H
    Zhang S; Yi X; Su X; Jian Z; Cui T; Guo S; Gao T; Li C; Li S; Xiao Q
    J Cell Mol Med; 2019 Aug; 23(8):5193-5199. PubMed ID: 31148371
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Melanocyte-keratinocyte cross-talk in vitiligo.
    Touni AA; Shivde RS; Echuri H; Abdel-Aziz RTA; Abdel-Wahab H; Kundu RV; Le Poole IC
    Front Med (Lausanne); 2023; 10():1176781. PubMed ID: 37275386
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Immunogenetics of Vitiligo: An Approach Toward Revealing the Secret of Depigmentation.
    Dwivedi M; Laddha NC; Begum R
    Adv Exp Med Biol; 2022; 1367():61-103. PubMed ID: 35286692
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Vitiligo: a possible model of degenerative diseases.
    Bellei B; Pitisci A; Ottaviani M; Ludovici M; Cota C; Luzi F; Dell'Anna ML; Picardo M
    PLoS One; 2013; 8(3):e59782. PubMed ID: 23555779
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Melanocyte Adhesion and Apoptosis in Vitiligo: Linking Puzzle Blocks.
    Srivastava N; Gupta S; Parsad D
    Curr Mol Med; 2023; 23(8):709-711. PubMed ID: 35726816
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Vitiligo: An immune disease and its emerging mesenchymal stem cell therapy paradigm.
    Zhang M; Xia T; Lin F; Yu J; Yang Y; Lei W; Zhang T
    Transpl Immunol; 2023 Feb; 76():101766. PubMed ID: 36464219
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced bleaching treatment: opportunities for immune-assisted melanocyte suicide in vitiligo.
    Webb KC; Eby JM; Hariharan V; Hernandez C; Luiten RM; Le Poole IC
    Exp Dermatol; 2014 Aug; 23(8):529-33. PubMed ID: 24840876
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Perspectives of New Advances in the Pathogenesis of Vitiligo: From Oxidative Stress to Autoimmunity.
    Wang Y; Li S; Li C
    Med Sci Monit; 2019 Feb; 25():1017-1023. PubMed ID: 30723188
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mesenchymal stem cells promote human melanocytes proliferation and resistance to apoptosis through PTEN pathway in vitiligo.
    Zhu L; Lin X; Zhi L; Fang Y; Lin K; Li K; Wu L
    Stem Cell Res Ther; 2020 Jan; 11(1):26. PubMed ID: 31941556
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mitochondria-Melanocyte cellular interactions: An emerging mechanism of vitiligo pathogenesis.
    Kaushik H; Kumar V; Parsad D
    J Eur Acad Dermatol Venereol; 2023 Nov; 37(11):2196-2207. PubMed ID: 36897230
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Roflumilast enhances the melanogenesis and attenuates oxidative stress-triggered damage in melanocytes.
    Chen Z; Li Y; Xie Y; Nie S; Chen B; Wu Z
    J Dermatol Sci; 2023 May; 110(2):44-52. PubMed ID: 37069030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.