These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 35360280)

  • 1. The Predictive Role of Low Spatial Frequencies in Automatic Face Processing: A Visual Mismatch Negativity Investigation.
    Lacroix A; Harquel S; Mermillod M; Vercueil L; Alleysson D; Dutheil F; Kovarski K; Gomot M
    Front Hum Neurosci; 2022; 16():838454. PubMed ID: 35360280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High spatial frequency filtered primes hastens happy faces categorization in autistic adults.
    Lacroix A; Nalborczyk L; Dutheil F; Kovarski K; Chokron S; Garrido M; Gomot M; Mermillod M
    Brain Cogn; 2021 Dec; 155():105811. PubMed ID: 34737127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low Spatial Frequency Bias in Schizophrenia is Not Face Specific: When the Integration of Coarse and Fine Information Fails.
    Laprevote V; Oliva A; Ternois AS; Schwan R; Thomas P; Boucart M
    Front Psychol; 2013; 4():248. PubMed ID: 23653616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual Mismatch Negativity Reflects Enhanced Response to the Deviant: Evidence From Event-Related Potentials and Electroencephalogram Time-Frequency Analysis.
    Zeng X; Ji L; Liu Y; Zhang Y; Fu S
    Front Hum Neurosci; 2022; 16():800855. PubMed ID: 35350445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low spatial frequency filtering modulates early brain processing of affective complex pictures.
    Alorda C; Serrano-Pedraza I; Campos-Bueno JJ; Sierra-Vázquez V; Montoya P
    Neuropsychologia; 2007 Nov; 45(14):3223-33. PubMed ID: 17681356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral regions and hemispheric specialization for processing spatial frequencies during natural scene recognition. An event-related fMRI study.
    Peyrin C; Baciu M; Segebarth C; Marendaz C
    Neuroimage; 2004 Oct; 23(2):698-707. PubMed ID: 15488419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facial Expression Related vMMN: Disentangling Emotional from Neutral Change Detection.
    Kovarski K; Latinus M; Charpentier J; Cléry H; Roux S; Houy-Durand E; Saby A; Bonnet-Brilhault F; Batty M; Gomot M
    Front Hum Neurosci; 2017; 11():18. PubMed ID: 28194102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-Related Differences in Spatial Frequency Processing during Scene Categorization.
    Ramanoël S; Kauffmann L; Cousin E; Dojat M; Peyrin C
    PLoS One; 2015; 10(8):e0134554. PubMed ID: 26288146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking changes in spatial frequency sensitivity during natural image processing in school age: an event-related potential study.
    Rokszin AA; Győri-Dani D; Bácsi J; Nyúl LG; Csifcsák G
    J Exp Child Psychol; 2018 Feb; 166():664-678. PubMed ID: 29128609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Neural Bases of the Semantic Interference of Spatial Frequency-based Information in Scenes.
    Kauffmann L; Bourgin J; Guyader N; Peyrin C
    J Cogn Neurosci; 2015 Dec; 27(12):2394-405. PubMed ID: 26244724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The neural bases of spatial frequency processing during scene perception.
    Kauffmann L; Ramanoël S; Peyrin C
    Front Integr Neurosci; 2014; 8():37. PubMed ID: 24847226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental changes in ERP responses to spatial frequencies.
    van den Boomen C; Jonkman LM; Jaspers-Vlamings PH; Cousijn J; Kemner C
    PLoS One; 2015; 10(3):e0122507. PubMed ID: 25799038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical Thickness and Natural Scene Recognition in the Child's Brain.
    Orliac F; Borst G; Simon G; Mevel K; Vidal J; Dollfus S; Houdé O; Peyrin C; Poirel N
    Brain Sci; 2020 May; 10(6):. PubMed ID: 32481756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of face spatial frequencies on cortical processing revealed by magnetoencephalography.
    Hsiao FJ; Hsieh JC; Lin YY; Chang Y
    Neurosci Lett; 2005 May 20-27; 380(1-2):54-9. PubMed ID: 15854750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competition for attentional resources between low spatial frequency content of emotional images and a foreground task in early visual cortex.
    Müller MM; Gundlach C
    Psychophysiology; 2017 Mar; 54(3):429-443. PubMed ID: 27990660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High spatial frequencies disrupt conscious visual recognition: evidence from an attentional blink paradigm.
    Mermillod M; Perrier MJR; Lacroix A; Kauffmann L; Peyrin C; Méot A; Vermeulen N; Dutheil F
    Heliyon; 2022 Dec; 8(12):e11964. PubMed ID: 36561662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coarse-to-fine information integration in human vision.
    Petras K; Ten Oever S; Jacobs C; Goffaux V
    Neuroimage; 2019 Feb; 186():103-112. PubMed ID: 30403971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased fusiform area activation in schizophrenia during processing of spatial frequency-degraded faces, as revealed by fMRI.
    Silverstein SM; All SD; Kasi R; Berten S; Essex B; Lathrop KL; Little DM
    Psychol Med; 2010 Jul; 40(7):1159-69. PubMed ID: 19895721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarse-to-fine encoding of spatial frequency information into visual short-term memory for faces but impartial decay.
    Gao Z; Bentin S
    J Exp Psychol Hum Percept Perform; 2011 Aug; 37(4):1051-64. PubMed ID: 21500938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinotopic and lateralized processing of spatial frequencies in human visual cortex during scene categorization.
    Musel B; Bordier C; Dojat M; Pichat C; Chokron S; Le Bas JF; Peyrin C
    J Cogn Neurosci; 2013 Aug; 25(8):1315-31. PubMed ID: 23574583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.