These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35360313)

  • 41. Retrieval of Crop Variables from Proximal Multispectral UAV Image Data Using PROSAIL in Maize Canopy.
    Chakhvashvili E; Siegmann B; Muller O; Verrelst J; Bendig J; Kraska T; Rascher U
    Remote Sens (Basel); 2022 Mar; 14(5):1247. PubMed ID: 36082321
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of Rice Yield Based on Biomass and SPAD-Based Leaf Nitrogen for Large Genotype Plots.
    Duque AF; Patino D; Colorado JD; Petro E; Rebolledo MC; Mondragon IF; Espinosa N; Amezquita N; Puentes OD; Mendez D; Jaramillo-Botero A
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447767
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assessing the Impact of Spatial Resolution on the Estimation of Leaf Nitrogen Concentration Over the Full Season of Paddy Rice Using Near-Surface Imaging Spectroscopy Data.
    Zhou K; Cheng T; Zhu Y; Cao W; Ustin SL; Zheng H; Yao X; Tian Y
    Front Plant Sci; 2018; 9():964. PubMed ID: 30026750
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Estimation of tomato water status with photochemical reflectance index and machine learning: Assessment from proximal sensors and UAV imagery.
    Tang Z; Jin Y; Brown PH; Park M
    Front Plant Sci; 2023; 14():1057733. PubMed ID: 37089640
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Disturbed boundaries extraction in coal-grain overlap areas with high groundwater levels using UAV-based visible and multispectral imagery.
    Guo Y; Zhao Y; Yan H
    Environ Sci Pollut Res Int; 2022 Aug; 29(39):58892-58905. PubMed ID: 35378647
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Non-destructive monitoring of maize LAI by fusing UAV spectral and textural features.
    Sun X; Yang Z; Su P; Wei K; Wang Z; Yang C; Wang C; Qin M; Xiao L; Yang W; Zhang M; Song X; Feng M
    Front Plant Sci; 2023; 14():1158837. PubMed ID: 37063231
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prediction of wheat SPAD using integrated multispectral and support vector machines.
    Wang W; Sun N; Bai B; Wu H; Cheng Y; Geng H; Song J; Zhou J; Pang Z; Qian S; Zeng W
    Front Plant Sci; 2024; 15():1405068. PubMed ID: 38966145
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantifying vegetation biophysical variables from the Sentinel-3/FLEX tandem mission: Evaluation of the synergy of OLCI and FLORIS data sources.
    De Grave C; Verrelst J; Morcillo-Pallarés P; Pipia L; Rivera-Caicedo JP; Amin E; Belda S; Moreno J
    Remote Sens Environ; 2020 Dec; 251():. PubMed ID: 36082362
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-throughput phenotyping for non-destructive estimation of soybean fresh biomass using a machine learning model and temporal UAV data.
    Ranđelović P; Đorđević V; Miladinović J; Prodanović S; Ćeran M; Vollmann J
    Plant Methods; 2023 Aug; 19(1):89. PubMed ID: 37633921
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hybrid inversion of radiative transfer models based on high spatial resolution satellite reflectance data improves fractional vegetation cover retrieval in heterogeneous ecological systems after fire.
    Fernández-Guisuraga JM; Verrelst J; Calvo L; Suárez-Seoane S
    Remote Sens Environ; 2021 Mar; 255():. PubMed ID: 36081599
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion.
    Zhang H; Ge Y; Xie X; Atefi A; Wijewardane NK; Thapa S
    Plant Methods; 2022 May; 18(1):60. PubMed ID: 35505350
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Study of detection of SPAD value in tomato leaves stressed by grey mold based on hyperspectral technique].
    Xie CQ; He Y; Li XL; Liu F; Du PP; Feng L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Dec; 32(12):3324-8. PubMed ID: 23427561
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Best hyperspectral indices for assessing leaf chlorophyll content in a degraded temperate vegetation.
    Peng Y; Fan M; Wang Q; Lan W; Long Y
    Ecol Evol; 2018 Jul; 8(14):7068-7078. PubMed ID: 30073068
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stress Distribution Analysis on Hyperspectral Corn Leaf Images for Improved Phenotyping Quality.
    Ma D; Wang L; Zhang L; Song Z; U Rehman T; Jin J
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32629882
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Space-time chlorophyll-a retrieval in optically complex waters that accounts for remote sensing and modeling uncertainties and improves remote estimation accuracy.
    He J; Chen Y; Wu J; Stow DA; Christakos G
    Water Res; 2020 Mar; 171():115403. PubMed ID: 31901508
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Monitor water quality through retrieving water quality parameters from hyperspectral images using graph convolution network with superposition of multi-point effect: A case study in Maozhou River.
    Zhang Y; Kong X; Deng L; Liu Y
    J Environ Manage; 2023 Sep; 342():118283. PubMed ID: 37290307
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hyperspectral estimation of chlorophyll content in jujube leaves: integration of derivative processing techniques and dimensionality reduction algorithms.
    Tuerxun N; Zheng J; Wang R; Wang L; Liu L
    Front Plant Sci; 2023; 14():1260772. PubMed ID: 38034562
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hyperspectral Monitoring of Powdery Mildew Disease Severity in Wheat Based on Machine Learning.
    Feng ZH; Wang LY; Yang ZQ; Zhang YY; Li X; Song L; He L; Duan JZ; Feng W
    Front Plant Sci; 2022; 13():828454. PubMed ID: 35386677
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of Early Heat and Water Stress in Strawberry Plants Using Chlorophyll-Fluorescence Indices Extracted via Hyperspectral Images.
    Poobalasubramanian M; Park ES; Faqeerzada MA; Kim T; Kim MS; Baek I; Cho BK
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433302
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Wheat leaf area index prediction using data fusion based on high-resolution unmanned aerial vehicle imagery.
    Wu S; Deng L; Guo L; Wu Y
    Plant Methods; 2022 May; 18(1):68. PubMed ID: 35590377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.